The Impact of Surface Temperature Heterogeneity on Near-Surface Heat Transport

被引:0
|
作者
Travis Morrison
Marc Calaf
Chad W. Higgins
Stephen A. Drake
Alexei Perelet
Eric Pardyjak
机构
[1] University of Utah,Department of Mechanical Engineering
[2] Oregon State University,College of Agricultural Sciences
[3] University of Nevada,Department of Physics
来源
Boundary-Layer Meteorology | 2021年 / 180卷
关键词
Advection; Convective boundary layer; IPAQS campaign; Surface energy balance; Temperature tendency;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental closure of the surface energy balance during convective periods is a long-standing problem. With experimental data from the Idealized horizontal Planar Array experiment for Quantifying Surface heterogeneity, the terms of the temperature-tendency equation are computed, with an emphasis on the total derivative. The experiment occurred at the Surface Layer Turbulence and Environmental Science Test facility at the U.S. Army Dugway Proving Ground during the summer of 2019. The experimental layout contained an array of 21 flux stations over a 1 km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} grid. Sensible heat fluxes show high spatial variability, with maximum variability occurring during convective periods. Maximum variability in the vertical heat flux is 50–80 W m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} (median variability of 40%), while in the horizontal flux, it is 200–500 W m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} (median variability of 48% for the streamwise and 40% for the spanwise fluxes). Ensemble averages computed during convective afternoon periods show large magnitudes of horizontal advection (48 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} or 172 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}) and vertical flux divergence (13 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} or 47 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}). Probability density functions of the total derivative from convective cases show mean volumetric heating rates of 43 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} (154 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}) compared to 13 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} (47 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}) on non-convective days. A conceptual model based on persistent mean flow structures from local-surface-temperature heterogeneities may explain the observed advection. The model describes the difference between locally-driven advection and advection driven by larger-scale forcings. Of the cases examined, 83% with streamwise and 81% with spanwise advection during unstable periods are classified as locally driven by nearby surface thermal heterogeneities.
引用
收藏
页码:247 / 272
页数:25
相关论文
共 50 条
  • [1] The Impact of Surface Temperature Heterogeneity on Near-Surface Heat Transport
    Morrison, Travis
    Calaf, Marc
    Higgins, Chad W.
    Drake, Stephen A.
    Perelet, Alexei
    Pardyjak, Eric
    [J]. BOUNDARY-LAYER METEOROLOGY, 2021, 180 (02) : 247 - 272
  • [2] Impact of terrain heterogeneity on near-surface turbulence structure
    Fesquet, Clement
    Drobinski, Philippe
    Barthlott, Christian
    Dubos, Thomas
    [J]. ATMOSPHERIC RESEARCH, 2009, 94 (02) : 254 - 269
  • [3] The probability of the impact of ENSO on precipitation and near-surface temperature
    Davey, M. K.
    Brookshaw, A.
    Ineson, S.
    [J]. CLIMATE RISK MANAGEMENT, 2014, 1 : 5 - 24
  • [4] Near-surface ocean temperature
    Ward, B
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C2)
  • [5] Observations of Fire–Atmosphere Interactions and Near-Surface Heat Transport on a Slope
    Craig B. Clements
    Daisuke Seto
    [J]. Boundary-Layer Meteorology, 2015, 154 : 409 - 426
  • [6] A Near-surface Temperature Model of Arrokoth
    Umurhan, Orkan M.
    Grundy, William M.
    Bird, Michael K.
    Beyer, Ross
    Keane, James T.
    Linscott, Ivan R.
    Birch, Samuel
    Bierson, Carver
    Young, Leslie A.
    Stern, S. Alan
    Lisse, Carey M.
    Howett, Carly J. A.
    Protopapa, Silvia
    Spencer, John R.
    Binzel, Richard P.
    McKinnon, William B.
    Lauer, Tod R.
    Weaver, Harold A.
    Olkin, Catherine B.
    Singer, Kelsi N.
    Verbiscer, Anne J.
    Parker, Alex H.
    [J]. PLANETARY SCIENCE JOURNAL, 2022, 3 (05):
  • [7] Temperature measurements and heat transfer in near-surface snow at the South Pole
    Brandt, RE
    Warren, SG
    [J]. JOURNAL OF GLACIOLOGY, 1997, 43 (144) : 339 - 351
  • [8] Spatial heterogeneity of the soil moisture content and its impact on surface flux densities and near-surface meteorology
    Ronda, RJ
    van den Hurk, BJJM
    Holtslag, AAM
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2002, 3 (05) : 556 - 570
  • [9] Observations of Fire-Atmosphere Interactions and Near-Surface Heat Transport on a Slope
    Clements, Craig B.
    Seto, Daisuke
    [J]. BOUNDARY-LAYER METEOROLOGY, 2015, 154 (03) : 409 - 426
  • [10] Lateral Heat Transport in the Lofoten Basin: Near-Surface Pathways and Subsurface Exchange
    Dugstad, Johannes
    Fer, Ilker
    LaCasce, Joe
    de La Lama, Martha Sanchez
    Trodahl, Marta
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (05) : 2992 - 3006