Maximal arcs and disjoint maximal arcs in projective planes of order 16

被引:0
|
作者
Hamilton N. [1 ]
Stoichev S.D. [3 ]
Tonchev V.D. [2 ]
机构
[1] Department of Mathematics, University of Queensland, Brisbane
[2] Department of Mathematical Sciences, Michigan Technological University, Houghton
[3] Department of Computer Systems, Technical University
关键词
Projective Plane; Computer Search;
D O I
10.1007/BF01220304
中图分类号
学科分类号
摘要
This paper tabulates the results of a number of computer searches in projective planes of order 16. Maximal arcs of degree 4 are found in all but two of the known planes of order 16 (and their duals). Any such arc yields a resolvable 2-(52,4,1) design that admits at least 52 resolutions. Pairs of disjoint degree 4 maximal arcs are also shown to exist in certain of the planes giving rise to 104-sets of type (4, 8). © Birkhäuser Verlag, Basel, 2000.
引用
收藏
页码:117 / 126
页数:9
相关论文
共 50 条
  • [41] ON COMPLETE Q-ARCS IN PROJECTIVE-PLANES OF ORDER Q
    BEUTELSPACHER, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5A (03): : 449 - 454
  • [42] Maximal arcs and extended cyclic codes
    De Winter, Stefaan
    Ding, Cunsheng
    Tonchev, Vladimir D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 807 - 816
  • [43] An easier proof of the maximal arcs conjecture
    Ball, S
    Blokhuis, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) : 3377 - 3380
  • [44] A geometric approach to Mathon maximal arcs
    De Clerck, F.
    De Winter, S.
    Maes, T.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) : 1196 - 1211
  • [45] MAXIMAL ARCS AND GROUP DIVISIBLE DESIGNS
    RAHILLY, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (02) : 223 - 229
  • [46] MAXIMAL CONSISTENT SETS OF ARCS IN A TOURNAMENT
    SPENCER, JH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 584 - &
  • [47] DESIGNS CONSTRUCTED FROM MAXIMAL ARCS
    STINSON, DR
    DISCRETE MATHEMATICS, 1991, 97 (1-3) : 387 - 393
  • [48] Maximal arcs and extended cyclic codes
    Stefaan De Winter
    Cunsheng Ding
    Vladimir D. Tonchev
    Designs, Codes and Cryptography, 2019, 87 : 807 - 816
  • [49] Transitive arcs in planes of even order
    Storme, L
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (08) : 757 - 768
  • [50] Extended cyclic codes, maximal arcs and ovoids
    Abdukhalikov, Kanat
    Ho, Duy
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (10) : 2283 - 2294