The Weil–Petersson Isometry Group

被引:3
|
作者
Howard Masur
Michael Wolf
机构
[1] University of Illinois,Department of Mathematics
[2] Chicago,Department of Mathematics
[3] Rice University,undefined
来源
Geometriae Dedicata | 2002年 / 93卷
关键词
mapping class group; Teichmüller space; Weil–Petersson metric;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, for 3g−3+n>1 and (g,n)≠(1,2), the group of Weil–Petersson isometries of the Teichmüller space Tg,n coincides with the extended mapping class group.
引用
收藏
页码:177 / 190
页数:13
相关论文
共 50 条
  • [21] THE BERS EMBEDDING AND THE WEIL-PETERSSON METRIC
    WOLPERT, SA
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (02) : 497 - 508
  • [22] Systole functions and Weil-Petersson geometry
    Wu, Yunhui
    MATHEMATISCHE ANNALEN, 2024, 389 (02) : 1405 - 1440
  • [23] Weil-Petersson Teichmuller space revisited
    Wu, Li
    Hu, Yun
    Shen, Yuliang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [24] DYNAMICAL PROPERTIES OF THE WEIL-PETERSSON METRIC
    Hamenstaedt, Ursula
    IN THE TRADITION OF AHLFORS-BERS, V, 2010, 510 : 109 - 127
  • [25] ON THE WEIL-PETERSSON METRIC ON TEICHMULLER SPACE
    FISCHER, AE
    TROMBA, AJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) : 319 - 335
  • [26] Irreducible Metric Maps and Weil–Petersson Volumes
    Timothy Budd
    Communications in Mathematical Physics, 2022, 394 : 887 - 917
  • [27] The Weil-Petersson and Thurston symplectic forms
    Sözen, Y
    Bonahon, F
    DUKE MATHEMATICAL JOURNAL, 2001, 108 (03) : 581 - 597
  • [28] Cluster algebras and Weil-Petersson forms
    Gekhtman, M
    Shapiro, M
    Vainshtein, A
    DUKE MATHEMATICAL JOURNAL, 2005, 127 (02) : 291 - 311
  • [29] Ergodicity of the Weil-Petersson Geodesic Flow
    Burns, Keith
    Masur, Howard
    Wilkinson, Amie
    ERGODIC THEORY AND NEGATIVE CURVATURE, 2017, 2164 : 157 - 174
  • [30] Thermodynamics, dimension and the Weil-Petersson metric
    McMullen, Curtis T.
    INVENTIONES MATHEMATICAE, 2008, 173 (02) : 365 - 425