Maximum Intersection of Linear Codes and Codes Equivalent to Linear

被引:0
|
作者
Avgustinovich S.V. [1 ,2 ]
Gorkunov E.V. [1 ,2 ]
机构
[1] Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk
[2] Novosibirsk State University, ul. Pirogova 1, Novosibirsk
基金
俄罗斯基础研究基金会;
关键词
code intersection; equivalent code; finite field; isometry; isotopy; linear code; MDS-code; pseudolinear code;
D O I
10.1134/S1990478919040021
中图分类号
学科分类号
摘要
We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M. © 2019, Pleiades Publishing, Ltd.
引用
收藏
页码:600 / 605
页数:5
相关论文
共 50 条
  • [21] Linear Maximum Rank Distance Codes of Exceptional Type
    Bartoli, Daniele
    Zini, Giovanni
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 3627 - 3636
  • [22] Hybrid maximum likelihood decoding for linear block codes
    Song, Young Joon
    Song, Young Joon, 1600, Science and Engineering Research Support Society (09): : 91 - 100
  • [23] Quantum Maximum Likelihood Decoding for Linear Block Codes
    Jung, Hyunwoo
    Kang, Jeonghwan
    Ha, Jeongseok
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 227 - 232
  • [24] Non-linear maximum rank distance codes
    Cossidente, Antonio
    Marino, Giuseppe
    Pavese, Francesco
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 79 (03) : 597 - 609
  • [25] DECODING OF MAXIMUM-DISTANCE SEPARABLE LINEAR CODES
    YAU, SS
    LIU, YC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (04) : 487 - +
  • [26] MAXIMUM DISTANCE BOUNDS FOR LINEAR ANTI-CODES
    HASHIM, AA
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1976, 123 (03): : 189 - 190
  • [27] The extended codes of some linear codes
    Sun, Zhonghua
    Ding, Cunsheng
    Chen, Tingfang
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [28] On the asymptotic number of non-equivalent binary linear codes
    Hou, Xiang-dong
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (02) : 318 - 326
  • [29] On the Concatenation of Non-Binary Random Linear Fountain Codes with Maximum Distance Separable Codes
    Blasco, Francisco Lazaro
    Liva, Gianluigi
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [30] EAQEC codes from the LCD codes decomposition of linear codes
    Li, Hui
    Liu, Xiusheng
    QUANTUM INFORMATION PROCESSING, 2025, 24 (02)