Staged self-assembly and polyomino context-free grammars

被引:0
|
作者
Andrew Winslow
机构
[1] Tufts University,Department of Computer Science
来源
Natural Computing | 2015年 / 14卷
关键词
aTAM; Biocomputing; Combinatorial optimization; Formal languages; Hierarchical self-assembly; Tile assembly; 2HAM;
D O I
暂无
中图分类号
学科分类号
摘要
Previous work by Demaine et al. (Nat Comput 6937:100–114, 2012) developed a strong connection between smallest context-free grammars and staged self-assembly systems for one-dimensional strings and assemblies. We extend this work to two-dimensional polyominoes and assemblies, comparing staged self-assembly systems to a natural generalization of context-free grammars we call polyomino context-free grammars (PCFGs). We achieve nearly optimal bounds on the largest ratios of the smallest PCFG and staged self-assembly system for a given polyomino with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} cells. For the ratio of PCFGs over assembly systems, we show that the smallest PCFG can be an Ω(n/log3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n/\log ^3{n})$$\end{document}-factor larger than the smallest staged assembly system, even when restricted to square polyominoes. For the ratio of assembly systems over PCFGs, we show that the smallest staged assembly system is never more than a O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log {n})$$\end{document}-factor larger than the smallest PCFG and is sometimes an Ω(logn/loglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\log {n}/\log \log {n})$$\end{document}-factor larger.
引用
收藏
页码:293 / 302
页数:9
相关论文
共 50 条
  • [21] On Muller Context-Free Grammars
    Esik, Zoltan
    Ivan, Szabolcs
    DEVELOPMENTS IN LANGUAGE THEORY, 2010, 6224 : 173 - 184
  • [22] CONTEXT-FREE TEXT GRAMMARS
    EHRENFEUCHT, A
    TENPAS, P
    ROZENBERG, G
    ACTA INFORMATICA, 1994, 31 (02) : 161 - 206
  • [23] Binary Context-Free Grammars
    Turaev, Sherzod
    Abdulghafor, Rawad
    Alwan, Ali Amer
    Abd Almisreb, Ali
    Gulzar, Yonis
    SYMMETRY-BASEL, 2020, 12 (08):
  • [24] Cooperation in context-free grammars
    Dassow, J
    Mitrana, V
    THEORETICAL COMPUTER SCIENCE, 1997, 180 (1-2) : 353 - 361
  • [25] Pullback Grammars Are Context-Free
    Bauderon, Michel
    Chen, Rui
    Ly, Olivier
    GRAPH TRANSFORMATIONS, ICGT 2008, 2008, 5214 : 366 - +
  • [26] Evolving context-free grammars
    Cyre, W
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 643 - 646
  • [27] ON MULTIPLE CONTEXT-FREE GRAMMARS
    SEKI, H
    MATSUMURA, T
    FUJII, M
    KASAMI, T
    THEORETICAL COMPUTER SCIENCE, 1991, 88 (02) : 191 - 229
  • [28] INDEXED GRAMMARS - AN EXTENSION OF CONTEXT-FREE GRAMMARS
    AHO, AV
    JOURNAL OF THE ACM, 1968, 15 (04) : 647 - &
  • [29] On translating context-free grammars into Lambek grammars
    Kuznetsov, S. L.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) : 63 - 69
  • [30] Self-embedded context-free grammars with regular counterparts
    Stefan Andrei
    Wei-Ngan Chin
    Salvador Valerio Cavadini
    Acta Informatica, 2004, 40 : 349 - 365