Staged self-assembly and polyomino context-free grammars

被引:0
|
作者
Andrew Winslow
机构
[1] Tufts University,Department of Computer Science
来源
Natural Computing | 2015年 / 14卷
关键词
aTAM; Biocomputing; Combinatorial optimization; Formal languages; Hierarchical self-assembly; Tile assembly; 2HAM;
D O I
暂无
中图分类号
学科分类号
摘要
Previous work by Demaine et al. (Nat Comput 6937:100–114, 2012) developed a strong connection between smallest context-free grammars and staged self-assembly systems for one-dimensional strings and assemblies. We extend this work to two-dimensional polyominoes and assemblies, comparing staged self-assembly systems to a natural generalization of context-free grammars we call polyomino context-free grammars (PCFGs). We achieve nearly optimal bounds on the largest ratios of the smallest PCFG and staged self-assembly system for a given polyomino with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} cells. For the ratio of PCFGs over assembly systems, we show that the smallest PCFG can be an Ω(n/log3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n/\log ^3{n})$$\end{document}-factor larger than the smallest staged assembly system, even when restricted to square polyominoes. For the ratio of assembly systems over PCFGs, we show that the smallest staged assembly system is never more than a O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log {n})$$\end{document}-factor larger than the smallest PCFG and is sometimes an Ω(logn/loglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\log {n}/\log \log {n})$$\end{document}-factor larger.
引用
收藏
页码:293 / 302
页数:9
相关论文
共 50 条
  • [1] Staged Self-assembly and Polyomino Context-Free Grammars
    Winslow, Andrew
    DNA COMPUTING AND MOLECULAR PROGRAMMING, DNA 2013, 2013, 8141 : 174 - 188
  • [2] Staged self-assembly and polyomino context-free grammars
    Winslow, Andrew
    NATURAL COMPUTING, 2015, 14 (02) : 293 - 302
  • [3] Generalized context-free grammars and multiple context-free grammars
    Kasami, Tadao
    Seki, Hiroyuki
    Fujii, Mamoru
    Systems and Computers in Japan, 1989, 20 (07): : 43 - 52
  • [4] Context-Free Tree Grammars are as Powerful as Context-Free Jungle Grammars
    Drewes, Frank
    Engelfriett, Joost
    ACTA CYBERNETICA, 2015, 22 (02): : 373 - 392
  • [5] REDUCTION OF CONTEXT-FREE GRAMMARS
    TANIGUCHI, K
    KASAMI, T
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (12): : 204 - +
  • [6] CONTEXT-FREE GRAMMARS WITH MEMORY
    MORIYA, E
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1992, E75D (06) : 847 - 851
  • [7] On translating context-free grammars into Lambek grammars
    S. L. Kuznetsov
    Proceedings of the Steklov Institute of Mathematics, 2015, 290 : 63 - 69
  • [8] Context-Free Categorical Grammars
    Bauderon, Michel
    Chen, Rui
    Ly, Olivier
    ALGEBRAIC INFORMATICS, 2009, 5725 : 160 - +
  • [9] REDUCTION OF CONTEXT-FREE GRAMMARS
    TANIGUCHI, K
    KASAMI, T
    INFORMATION AND CONTROL, 1970, 17 (01): : 92 - +
  • [10] RELATEDNESS OF CONTEXT-FREE GRAMMARS
    WALTER, HKG
    COMPUTING, 1979, 22 (01) : 31 - 58