Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers

被引:0
|
作者
Muhammet Cihat Dağlı
机构
[1] Akdeniz University,Department of Mathematics
关键词
Bernoulli and Euler polynomials; Stirling numbers; Closed forms; Determinantal expression; 11B68; 05A19; 11B83; 11C20; 11Y55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the author presents several closed forms and determinantal expressions involving Stirling numbers of the second kind for higher-order Bernoulli and Euler polynomials by applying the Faà di Bruno formula and some properties of Bell polynomials.
引用
收藏
相关论文
共 50 条
  • [41] Q-BERNOULLI AND EULER NUMBERS OF HIGHER ORDER
    SHARMA, A
    DUKE MATHEMATICAL JOURNAL, 1958, 25 (02) : 343 - 353
  • [42] Novel formulas of moments of Negative Binomial distribution connected with Apostol-Bernoulli numbers of higher order and Stirling numbers
    Simsek, Buket
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)
  • [43] CONGRUENCES AND RECURRENCES FOR BERNOULLI NUMBERS OF HIGHER-ORDER
    HOWARD, FT
    FIBONACCI QUARTERLY, 1994, 32 (04): : 316 - 328
  • [44] Some Identities of the Higher-Order Type 2 Bernoulli Numbers and Polynomials of the Second Kind
    Kim, Taekyun
    San Kim, Dae
    Dolgy, Dmitry, V
    Lee, Si-Hyeon
    Kwon, Jongkyum
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (03): : 1121 - 1132
  • [45] A higher-order Eringen model for Bernoulli–Euler nanobeams
    Raffaele Barretta
    Marko Čanadija
    Francesco Marotti de Sciarra
    Archive of Applied Mechanics, 2016, 86 : 483 - 495
  • [46] Higher-order Frobenius-Euler and poly-Bernoulli mixed-type polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2013
  • [47] Some identities of higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus
    Dae San Kim
    Taekyun Kim
    Dmitry V Dolgy
    Seog-Hoon Rim
    Journal of Inequalities and Applications, 2013
  • [48] Higher-order Frobenius-Euler and poly-Bernoulli mixed-type polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [49] Some identities of higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    Rim, Seog-Hoon
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [50] Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind
    Guo, Bai-Ni
    Qi, Feng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 251 - 257