Adapting extreme value statistics to financial time series: dealing with bias and serial dependence

被引:0
|
作者
Laurens de Haan
Cécile Mercadier
Chen Zhou
机构
[1] Erasmus University Rotterdam,Institut Camille Jordan
[2] Université Claude Bernard—Lyon 1,undefined
[3] De Nederlandsche Bank,undefined
来源
Finance and Stochastics | 2016年 / 20卷
关键词
Hill estimator; Bias correction; -mixing condition; Tail quantile process; 62G32; 60G70; C14;
D O I
暂无
中图分类号
学科分类号
摘要
We handle two major issues in applying extreme value analysis to financial time series, bias and serial dependence, jointly. This is achieved by studying bias correction methods when observations exhibit weak serial dependence, in the sense that they come from β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}-mixing series. For estimating the extreme value index, we propose an asymptotically unbiased estimator and prove its asymptotic normality under the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}-mixing condition. The bias correction procedure and the dependence structure have a joint impact on the asymptotic variance of the estimator. Then we construct an asymptotically unbiased estimator of high quantiles. We apply the new method to estimate the value-at-risk of the daily return on the Dow Jones Industrial Average index.
引用
收藏
页码:321 / 354
页数:33
相关论文
共 50 条
  • [21] Measures of Dispersion and Serial Dependence in Categorical Time Series
    Weiss, Christian H.
    ECONOMETRICS, 2019, 7 (02)
  • [22] Testing for serial dependence in time series models of counts
    Jung, RC
    Tremayne, AR
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (01) : 65 - 84
  • [23] Entropy testing for nonlinear serial dependence in time series
    Giannerini, Simone
    Maasoumi, Esfandiar
    Dagum, Estela Bee
    BIOMETRIKA, 2015, 102 (03) : 661 - 675
  • [24] Clustering financial time series with variance ratio statistics
    Bastos, Joao A.
    Caiado, Jorge
    QUANTITATIVE FINANCE, 2014, 14 (12) : 2121 - 2133
  • [25] Extreme-quantile tracking for financial time series
    Chavez-Demoulin, V.
    Embrechts, P.
    Sardy, S.
    JOURNAL OF ECONOMETRICS, 2014, 181 (01) : 44 - 52
  • [26] Extreme quantile estimation based on financial time series
    Dutta, Santanu
    Biswas, Suparna
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4226 - 4243
  • [27] NON-STATIONARITIES IN TIME SERIES AND ITS INTEGRATION IN EXTREME VALUE STATISTICS FOR RISK MANAGEMENT ISSUES
    Mudersbach, Christoph
    Jensen, Juergen
    COASTAL ENGINEERING 2008, VOLS 1-5, 2009, : 4109 - 4120
  • [28] Some comments on the estimation of a dependence index in bivariate extreme value statistics
    Beirlant, J
    Vandewalle, B
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (03) : 265 - 278
  • [29] Weather regime dependence of extreme value statistics for summer temperature and precipitation
    Yiou, P.
    Goubanova, K.
    Li, Z. X.
    Nogaj, M.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2008, 15 (03) : 365 - 378
  • [30] Dynamic tail dependence clustering of financial time series
    Giovanni De Luca
    Paola Zuccolotto
    Statistical Papers, 2017, 58 : 641 - 657