Partial inverse min–max spanning tree problem under the weighted bottleneck hamming distance

被引:0
|
作者
Qingzhen Dong
Xianyue Li
Yu Yang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
关键词
Partial inverse problem; Min–max spanning tree; Weighted bottleneck hamming distance; Strongly polynomial-time algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Min–max spanning tree problem is a classical problem in combinatorial optimization. Its purpose is to find a spanning tree to minimize its maximum edge in a given edge weighted graph. Given a connected graph G, an edge weight vector w and a forest F, the partial inverse min–max spanning tree problem (PIMMST) is to find a new weighted vector w∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w^*$$\end{document}, so that F can be extended into a min–max spanning tree with respect to w∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w^*$$\end{document} and the gap between w and w∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w^*$$\end{document} is minimized. In this paper, we research PIMMST under the weighted bottleneck Hamming distance. Firstly, we study PIMMST with value of optimal tree restriction, a variant of PIMMST, and show that this problem can be solved in strongly polynomial time. Then, by characterizing the properties of the value of optimal tree, we present first algorithm for PIMMST under the weighted bottleneck Hamming distance with running time O(|E|2log|E|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|E|^2\log |E|)$$\end{document}, where E is the edge set of G. Finally, by giving a necessary and sufficient condition to determine the feasible solution of this problem, we present a better algorithm for this problem with running time O(|E|log|E|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|E|\log |E|)$$\end{document}. Moreover, we show that these algorithms can be generalized to solve these problems with capacitated constraint.
引用
收藏
相关论文
共 50 条
  • [1] Partial inverse min-max spanning tree problem under the weighted bottleneck hamming distance
    Dong, Qingzhen
    Li, Xianyue
    Yang, Yu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 46 (04)
  • [2] Constrained inverse min–max spanning tree problems under the weighted Hamming distance
    Longcheng Liu
    Qin Wang
    Journal of Global Optimization, 2009, 43 : 83 - 95
  • [3] Inverse min-max spanning tree problem under the weighted sum-type hamming distance
    Liu, Longcheng
    Yao, Enyu
    COMBINATORICS, ALGORITHMS, PROBABILISTIC AND EXPERIMENTAL METHODOLOGIES, 2007, 4614 : 375 - +
  • [4] Inverse min-max spanning tree problem under the Weighted sum-type Hamming distance
    Liu, Longcheng
    Yao, Enyu
    THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 28 - 34
  • [5] Constrained inverse min-max spanning tree problems under the weighted Hamming distance
    Liu, Longcheng
    Wang, Qin
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (01) : 83 - 95
  • [6] Capacitated partial inverse maximum spanning tree under the weighted Hamming distance
    Xianyue Li
    Xichao Shu
    Huijing Huang
    Jingjing Bai
    Journal of Combinatorial Optimization, 2019, 38 : 1005 - 1018
  • [7] Capacitated partial inverse maximum spanning tree under the weighted Hamming distance
    Li, Xianyue
    Shu, Xichao
    Huang, Huijing
    Bai, Jingjing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (04) : 1005 - 1018
  • [8] Partial inverse min–max spanning tree problem
    Javad Tayyebi
    Ali Reza Sepasian
    Journal of Combinatorial Optimization, 2020, 40 : 1075 - 1091
  • [9] Partial inverse min-max spanning tree problem
    Tayyebi, Javad
    Sepasian, Ali Reza
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1075 - 1091
  • [10] Capacitated inverse optimal value problem on minimum spanning tree under bottleneck Hamming distance
    Hui Wang
    Xiucui Guan
    Qiao Zhang
    Binwu Zhang
    Journal of Combinatorial Optimization, 2021, 41 : 861 - 887