Inverse min-max spanning tree problem under the weighted sum-type hamming distance

被引:0
|
作者
Liu, Longcheng [1 ]
Yao, Enyu [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
min-max spanning tree; inverse problem; hamming distance; strongly polynomial algorithms;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The inverse optimization problem is to modify the weight (or cost, length, capacity and so on) such that a given feasible solution becomes an optimal solution. In this paper, we consider the inverse min-max spanning tree problem under the weighted sum-type Hamming distance. For the model considered, we present its combinatorial algorithm that run in strongly polynomial times.
引用
收藏
页码:375 / +
页数:2
相关论文
共 50 条
  • [1] Inverse min-max spanning tree problem under the Weighted sum-type Hamming distance
    Liu, Longcheng
    Yao, Enyu
    THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 28 - 34
  • [2] Inverse min-max spanning r-arborescence problem under the weighted sum-type Hamming distance
    Mohaghegh, M.
    Bonab, F. Baroughi
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (03)
  • [3] Partial inverse min-max spanning tree problem under the weighted bottleneck hamming distance
    Dong, Qingzhen
    Li, Xianyue
    Yang, Yu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 46 (04)
  • [4] Constrained inverse min-max spanning tree problems under the weighted Hamming distance
    Liu, Longcheng
    Wang, Qin
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (01) : 83 - 95
  • [5] Partial inverse min–max spanning tree problem under the weighted bottleneck hamming distance
    Qingzhen Dong
    Xianyue Li
    Yu Yang
    Journal of Combinatorial Optimization, 2023, 46
  • [6] Constrained inverse min–max spanning tree problems under the weighted Hamming distance
    Longcheng Liu
    Qin Wang
    Journal of Global Optimization, 2009, 43 : 83 - 95
  • [7] Inverse minimum flow problem under the weighted sum-type Hamming distance
    Liu, Longcheng
    Zheng, Wenhao
    Li, Chao
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 101 - 112
  • [8] Partial inverse min-max spanning tree problem
    Tayyebi, Javad
    Sepasian, Ali Reza
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1075 - 1091
  • [9] Inverse max sum spanning tree problem under Hamming distance by modifying the sum-cost vector
    Guan, Xiucui
    He, Xinyan
    Pardalos, Panos M.
    Zhang, Binwu
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 69 (04) : 911 - 925
  • [10] Weighted inverse minimum spanning tree problems under Hamming distance
    He, Y
    Zhang, BW
    Yao, EY
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2005, 9 (01) : 91 - 100