Direct observation of localized surface plasmon field enhancement by Kelvin probe force microscopy

被引:0
|
作者
Da-Bing Li
Xiao-Juan Sun
Yu-Ping Jia
Mark I Stockman
Hari P Paudel
Hang Song
Hong Jiang
Zhi-Ming Li
机构
[1] State Key Laboratory of Luminescence and Applications,Center for Nano
[2] Changchun Institute of Optics,Optics (CeNO) and Department of Physics and Astronomy
[3] Fine Mechanics and Physics,undefined
[4] Chinese Academy of Sciences,undefined
[5] Georgia State University,undefined
来源
关键词
detector; GaN; KPFM; plasmon;
D O I
暂无
中图分类号
学科分类号
摘要
A surface plasmon (SP) is a fundamental excitation state that exists in metal nanostructures. Over the past several years, the performance of optoelectronic devices has been improved greatly via the SP enhancement effect. In our previous work, the responsivity of GaN ultraviolet detectors was increased by over 30 times when using Ag nanoparticles. However, the physics of the SP enhancement effect has not been established definitely because of the lack of experimental evidence. To reveal the physical origin of this enhancement, Kelvin probe force microscopy (KPFM) was used to observe the SP-induced surface potential reduction in the vicinity of Ag nanoparticles on a GaN epilayer. Under ultraviolet illumination, the localized field enhancement induced by the SP forces the photogenerated electrons to drift close to the Ag nanoparticles, leading to a reduction of the surface potential around the Ag nanoparticles on the GaN epilayer. For an isolated Ag nanoparticle with a diameter of ~200 nm, the distribution of the SP localized field is located within 60 nm of the boundary of the Ag nanoparticle. For a dimer of Ag nanoparticles, the localized field enhancement between the nanoparticles was the strongest. The results presented here provide direct experimental proof of the localized field enhancement. These results not only explain the high performance of GaN detectors observed with the use of Ag nanoparticles but also reveal the physical mechanism of SP enhancement in optoelectronic devices, which will help us further understand and improve the performance of SP-based optoelectronic devices in the future.
引用
收藏
页码:e17038 / e17038
相关论文
共 50 条
  • [41] Localized charge imaging with scanning Kelvin probe microscopy
    Orihuela, M. F.
    Somoza, A. M.
    Colchero, J.
    Ortuno, M.
    Palacios-Lidon, E.
    NANOTECHNOLOGY, 2017, 28 (02)
  • [42] Dynamic force microscopy and Kelvin probe force microscopy of KBr film on InSb(001) surface at submonolayer coverage
    Krok, F
    Kolodziej, JJ
    Such, B
    Czuba, P
    Struski, P
    Piatkowski, P
    Szymonski, M
    SURFACE SCIENCE, 2004, 566 : 63 - 67
  • [43] Surface potential measurement of oligothiophene ultrathin films by Kelvin probe force microscopy
    Umeda, K
    Kobayashi, K
    Ishida, K
    Hotta, S
    Yamada, H
    Matsushige, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (6B): : 4381 - 4383
  • [44] Surface potential difference of biomineralized inorganic nanodot by Kelvin probe force microscopy
    Yamamoto, Shin-ichi
    Yoshioka, Hideki
    Uraoka, Yukiharu
    Fuyuki, Takashi
    Okuda, Mitsuhiro
    Yamashita, Ichiro
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (8B): : 5647 - 5651
  • [45] Surface potential measurement of oligothiophene ultrathin films by Kelvin probe force microscopy
    Umeda, Keiichi
    Kobayashi, Kei
    Ishida, Kenji
    Hotta, Shu
    Yamada, Hirofumi
    Matsushige, Kazumi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2001, 40 (6 B): : 4381 - 4383
  • [46] Dual Harmonic Kelvin Probe Force Microscopy for Surface Potential Measurements of Ferroelectrics
    Collins, L.
    Kilpatrick, J. I.
    Bhaskaran, M.
    Sriram, S.
    Weber, S. A. L.
    Jarvis, S. P.
    Rodriguez, B. J.
    2012 INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF FERROELECTRICS HELD JOINTLY WITH 11TH IEEE ECAPD AND IEEE PFM (ISAF/ECAPD/PFM), 2012,
  • [47] Surface potential relaxation of ferroelectric domain investigated by Kelvin probe force microscopy
    Kim, Jiyoon
    Kim, Yunseok
    No, Kwangsoo
    Buhlmann, Simon
    Hong, Seungbum
    Nam, Yun-Woo
    Kim, Seung-Hyun
    INTEGRATED FERROELECTRICS, 2006, 85 : 25 - 30
  • [48] Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation
    Miyahara, Yoichi
    Topple, Jessica
    Schumacher, Zeno
    Grutter, Peter
    PHYSICAL REVIEW APPLIED, 2015, 4 (05):
  • [49] Cross-sectional observation in nanoscale for Si power MOSFET by atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy
    Doi, Atsushi
    Nakajima, Mizuki
    Masuda, Sho
    Satoh, Nobuo
    Yamamoto, Hidekazu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58
  • [50] Surface potential measurement of carbon nanotube field-effect transistors using Kelvin probe force microscopy
    Umesaka, Takeo
    Ohnaka, Hirofumi
    Ohno, Yutaka
    Kishimoto, Shigeru
    Maezawa, Koichi
    Mizutani, Takashi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B): : 2496 - 2500