Numerical quenching for a semilinear parabolic equation with nonlinear boundary conditions

被引:0
|
作者
Nabongo D. [1 ]
Boni T.K. [2 ]
机构
[1] UFR-SFA, Département de Mathématiques et Informatiques, Université d'Abobo-Adjamé, Abidjan 16
[2] Institut National Polytechnique Félix Houphouët-Boigny de Yamoussoukro, Yamoussoukro
关键词
Convergence; Discretizations; Nonlinear boundary conditions; Numerical quenching time; Quenching; Semilinear parabolic equation;
D O I
10.1134/S1995080208040069
中图分类号
学科分类号
摘要
This paper concerns the study of the numerical approximation for the following boundary value problem: (1) = -u 0 -p (1). We find some conditions under which the solution of a discrete form of the above problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some numerical experiments to illustrate our analysis. © 2008 MAIK Nauka.
引用
收藏
页码:245 / 254
页数:9
相关论文
共 50 条