ASYMPTOTIC BEHAVIOR FOR NUMERICAL SOLUTIONS OF A SEMILINEAR PARABOLIC EQUATION WITH A NONLINEAR BOUNDARY CONDITION

被引:0
|
作者
Diabate, Nabongo [1 ]
Boni, Theodore K. [2 ]
机构
[1] Univ Abobo Adjame, UFR SFA, Dept Math & Informat, Abidjan 16, Cote Ivoire
[2] Inst Natl Polytech Houphouet Boigny Yamoussoukro, Yamoussoukro, Cote Ivoire
关键词
semidiscretizations; semilinear parabolic equation; asymptotic behavior; convergence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the study of the numerical approximation for the following initial-boundary value problem, u(t) = u(xx) - au(p), 0 < x < 1, t > 0, u(x)(0,t) = 0, u(x)(1,t) + bu(q)(1,t) = 0, t > 0, u(x,0) = u(0)(x)>= 0, 0 <= x <= 1, where a > 0, b > 0 and p > q > 1. We show that the solution of a semidiscrete form of the initial value problem above goes to zero as t approaches infinity and give its asymptotic behavior. We provide some numerical experiments that illustrate our analysis.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条