Supercritical Poincaré–Andronov–Hopf Bifurcation in a Mean-Field Quantum Laser Equation

被引:0
|
作者
F. Fagnola
C. M. Mora
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Universidad de Concepción,Departamento de Ingeniería Matemática
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
37L10; 37L05; 37L15; 37A60; 47A55; 60H30; 81S22; 82C10;
D O I
暂无
中图分类号
学科分类号
摘要
We deal with the dynamical system properties of a Gorini–Kossakowski–Sudarshan–Lindblad equation with mean-field Hamiltonian that models a simple laser by applying a mean-field approximation to a quantum system describing a single-mode optical cavity and a set of two-level atoms, each coupled to a reservoir. We prove that the mean-field quantum master equation has a unique regular stationary solution. In case a relevant parameter Cb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\mathfrak {b} $$\end{document}, i.e., the cavity cooperative parameter, is less than 1, we prove that any regular solution converges exponentially fast to the equilibrium, and so the regular stationary state is a globally asymptotically stable equilibrium solution. We obtain that a locally exponential stable limit cycle is born at the regular stationary state as Cb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\mathfrak {b} $$\end{document} passes through the critical value 1. Then, the mean-field laser equation has a Poincaré–Andronov–Hopf bifurcation at Cb=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\mathfrak {b} =1 $$\end{document} of supercritical-like type. Namely, we derive rigorously, at the level of density matrices—for the first time—the transition from a global attractor quantum state, where the light is not emitted, to a locally stable set of coherent quantum states producing coherent light. Moreover, we establish the local exponential stability of the limit cycle in case a relevant parameter is between the first and second laser thresholds appearing in the semiclassical laser theory. Thus, we get that the coherent laser light persists over time under this condition. In order to prove the exponential convergence of the quantum state, as the time goes to +∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+ \infty $$\end{document}, we develop a new technique for proving the exponential convergence in open quantum systems that is based on a new variation of constant formula, which is obtained by combining probabilistic techniques with classical arguments from the semigroup theory. Furthermore, applying our main results we find the long-time behavior of the von Neumann entropy, the photon number statistics, and the quantum variance of the quadratures.
引用
收藏
页码:171 / 217
页数:46
相关论文
共 50 条
  • [21] Nonequilibrium Dynamical Mean-Field Theory: An Auxiliary Quantum Master Equation Approach
    Arrigoni, Enrico
    Knap, Michael
    von der Linden, Wolfgang
    PHYSICAL REVIEW LETTERS, 2013, 110 (08)
  • [22] Mean-field theory of social laser
    Alexander P. Alodjants
    A. Yu. Bazhenov
    A. Yu. Khrennikov
    A. V. Bukhanovsky
    Scientific Reports, 12
  • [23] Mean-field theory of social laser
    Alodjants, Alexander P.
    Bazhenov, A. Yu
    Khrennikov, A. Yu
    Bukhanovsky, A., V
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] Equation of state for solids with mean-field anharmonicity
    Holzapfel, Wilfried B.
    HIGH PRESSURE RESEARCH, 2006, 26 (04) : 313 - 317
  • [25] The Vlasov equation and the Hamiltonian mean-field model
    Barré, J
    Bouchet, F
    Dauxois, T
    Ruffo, S
    Yamaguchi, YY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 177 - 183
  • [26] STOCHASTIC LIENARD EQUATION WITH MEAN-FIELD INTERACTION
    NARITA, K
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) : 888 - 905
  • [27] A MEAN-FIELD EQUATION FOR A COSINE INTERACTION ON A LATTICE
    EAB, CH
    CHALERMSRI, R
    PHYSICA A, 1989, 161 (03): : 539 - 552
  • [28] The Schrodinger Equation in the Mean-Field and Semiclassical Regime
    Golse, Francois
    Paul, Thierry
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (01) : 57 - 94
  • [29] Bifurcation Analysis of a Heterogeneous Mean-Field Oscillator Game Model
    Yin, Huibing
    Mehta, Prashant G.
    Meyn, Sean P.
    Shanbhag, Uday V.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 3895 - 3900
  • [30] Steady-state nonequilibrium dynamical mean-field theory and the quantum Boltzmann equation
    Freericks, J. K.
    Turkowski, V. M.
    PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS III, 2006, 35 : 39 - +