Low-dimensional behavior of generalized Kuramoto model

被引:0
|
作者
Sara Ameli
Keivan Aghababaei Samani
机构
[1] Max Planck Institute for Physics of Complex Systems,Peter Grünberg Institut (PGI
[2] Forschungszentrum Jülich GmbH,14)
[3] Isfahan University of Technology,Department of Physics
来源
Nonlinear Dynamics | 2022年 / 110卷
关键词
Synchronization; Kuramoto model;
D O I
暂无
中图分类号
学科分类号
摘要
We study the global bifurcation of a generalization of the Kuramoto model in the fully connected network in which the connections are weighted by the frequency of the oscillators. By driving the low dimensional manifold of this infinite-dimensional dynamical system, we obtain bifurcation boundaries for different types of transitions to the synchronized state. Using this analytic framework, we obtain the characteristic flow field of the system for each dynamical region in parameter space. To check the effect of nonzero-centered frequency distribution, we consider bimodal Lorentzian distribution as an example. In this case, the system shows three types of transitions to the synchronized state, depending on the parameters of the frequency distribution: (1) a two-step transition with Bellerophon state, (2) a continuous transition, as in the classical Kuramoto model, and (3) a first-order, explosive, transition with hysteresis.
引用
收藏
页码:2781 / 2791
页数:10
相关论文
共 50 条
  • [21] Ricci solitons on low-dimensional generalized symmetric spaces
    Calvaruso, Giovanni
    Rosado, Eugenia
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 106 - 117
  • [22] A low-dimensional model of separation bubbles
    Krechetnikov, R.
    Marsden, J. E.
    Nagib, H. M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1152 - 1160
  • [23] Variational Model for Low-Dimensional Magnets
    Yu. B. Kudasov
    R. V. Kozabaranov
    [J]. Physics of the Solid State, 2020, 62 : 1678 - 1684
  • [24] Generalized coupling in the Kuramoto model
    Filatrella, G.
    Pedersen, N. F.
    Wiesenfeld, K.
    [J]. PHYSICAL REVIEW E, 2007, 75 (01):
  • [25] GENERALIZED GAUSSIAN EFFECTIVE POTENTIAL - LOW-DIMENSIONAL SCALAR FIELDS
    CEA, P
    TEDESCO, L
    [J]. PHYSICS LETTERS B, 1994, 335 (3-4) : 423 - 427
  • [26] Classification of real low-dimensional Jacobi (generalized)-Lie bialgebras
    Rezaei-Aghdam, A.
    Sephid, M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (01)
  • [27] Low-dimensional model of a supersonic rectangular jet
    Moreno, D
    Krothapalli, A
    Alkislar, MB
    Lourenco, LM
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026304 - 1
  • [28] Low-dimensional model of spatial shear layers
    Wei, Mingjun
    Qawasmeh, Bashar R.
    Barone, Matthew
    Waanders, Bart G. van Bloemen
    Zhou, Lin
    [J]. PHYSICS OF FLUIDS, 2012, 24 (01)
  • [29] Model reduction for systems with low-dimensional chaos
    Piccardi, C
    Rinaldi, S
    [J]. DYNAMICS, BIFURCATIONS AND CONTROL, 2002, 273 : 255 - 268
  • [30] Response characteristics of a low-dimensional model neuron
    Cartling, B
    [J]. NEURAL COMPUTATION, 1996, 8 (08) : 1643 - 1652