The numerical evaluation of the error term in a quadrature formula of Clenshaw-Curtis type for the Gegenbauer weight function

被引:0
|
作者
H. V. Smith
D. B. Hunter
机构
[1] Quadrature Research Centre,Mathematics Unit, Department of Computing
[2] Bradford University,undefined
来源
BIT Numerical Mathematics | 2011年 / 51卷
关键词
Gegenbauer quadrature; Clenshaw-Curtis quadrature; Chebyshev polynomials; 65D32;
D O I
暂无
中图分类号
学科分类号
摘要
A method is derived for the numerical evaluation of the error term arising in a quadrature formula of Clenshaw-Curtis type for functions of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1-x^{2})^{\lambda - \frac{1}{2}}f(x)$\end{document} over the interval [−1,1]. The method is illustrated by an example.
引用
收藏
页码:1031 / 1038
页数:7
相关论文
共 25 条
  • [22] On the Gauss-Kronrod quadrature formula for a modified weight function of Chebyshev type
    Ramón Orive
    Aleksandar V. Pejčev
    Miodrag M. Spalević
    Ljubica Mihić
    Numerical Algorithms, 2022, 91 : 1855 - 1877
  • [23] On the Gauss-Kronrod quadrature formula for a modified weight function of Chebyshev type
    Orive, Ramon
    Pejcev, Aleksandar, V
    Spalevic, Miodrag M.
    Mihic, Ljubica
    NUMERICAL ALGORITHMS, 2022, 91 (04) : 1855 - 1877
  • [24] Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges
    Eshkuvatov, Z. K.
    Long, N. M. A. Nik
    Abdulkawi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 334 - 345
  • [25] Error Bounds for Gauss-Lobatto Quadrature Formula with Multiple End Points with Chebyshev Weight Function of the Third and the Fourth Kind
    Mihic, Ljubica V.
    Pejcev, Aleksandar V.
    Spalevic, Miodrag M.
    FILOMAT, 2016, 30 (01) : 231 - 239