Integration of the Matrix Modified Korteweg-de Vries Equation with an Integral-Type Source

被引:0
|
作者
G. U. Urazboev
U. A. Xoitmetov
A. K. Babadjanova
机构
[1] Al-Khorezmi Urgench State University,
来源
关键词
inverse scattering method; matrix Zakharov-Shabat system; eigenvalue; matrix modified Korteweg-de Vries equation; self-consistent source;
D O I
暂无
中图分类号
学科分类号
摘要
We derive time evolution equations for the scattering data for the matrix Zakharov-Shabat system with a potential that is the solution of the matrix modified Korteweg-de Vries equation with an integral-type source.
引用
收藏
页码:734 / 746
页数:12
相关论文
共 50 条
  • [41] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [42] On the generation of solitons and breathers in the modified Korteweg-de Vries equation
    Clarke, S
    Grimshaw, R
    Miller, P
    Pelinovsky, E
    Talipova, T
    CHAOS, 2000, 10 (02) : 383 - 392
  • [43] MODIFIED KORTEWEG-DE VRIES EQUATION AS A SYSTEM WITH BENIGN GHOSTS
    Smilga, Andrei
    ACTA POLYTECHNICA, 2022, 62 (01) : 190 - 196
  • [44] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [45] Inverse source problem for a generalized Korteweg-de Vries equation
    Arivazhagan, Anbu
    Sakthivel, Kumarasamy
    Balan, Natesan Barani
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06): : 823 - 848
  • [46] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [47] Long-time asymptotic behavior for the matrix modified Korteweg-de Vries equation
    Liu, Nan
    Zhao, Xiaodan
    Guo, Boling
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 443
  • [48] The superposition of algebraic solitons for the modified Korteweg-de Vries equation
    Chow, K. W.
    Wu, C. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (01) : 49 - 52
  • [49] Reduction of the Modified Korteweg-de Vries Equation in the Bilinear Form
    Yanjuan ZHU (Department of Mathematics & Physics
    CommunicationsinNonlinearScience&NumericalSimulation, 1998, (01) : 3 - 5
  • [50] A HIGHER-ORDER MODIFIED KORTEWEG-DE VRIES EQUATION
    LINARES, F
    COMPUTATIONAL & APPLIED MATHEMATICS, 1995, 14 (03): : 253 - 267