Universal Order Statistics for Random Walks & Lévy Flights

被引:0
|
作者
Benjamin De Bruyne
Satya N. Majumdar
Grégory Schehr
机构
[1] Université Paris-Saclay,LPTMS, CNRS, Univ. Paris
[2] Sorbonne Université,Sud
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider one-dimensional discrete-time random walks (RWs) of n steps, starting from x0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0=0$$\end{document}, with arbitrary symmetric and continuous jump distributions f(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\eta )$$\end{document}, including the important case of Lévy flights. We study the statistics of the gaps Δk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{k,n}$$\end{document} between the kth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\text {th}$$\end{document} and (k+1)th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+1)\text {th}$$\end{document} maximum of the set of positions {x1,…,xn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x_1,\ldots ,x_n\}$$\end{document}. We obtain an exact analytical expression for the probability distribution Pk,n(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{k,n}(\varDelta )$$\end{document} valid for any k and n, and jump distribution f(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\eta )$$\end{document}, which we then analyse in the large n limit. For jump distributions whose Fourier transform behaves, for small q, as f^(q)∼1-|q|μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{f}} (q) \sim 1 - |q|^\mu $$\end{document} with a Lévy index 0<μ≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \mu \le 2$$\end{document}, we find that the distribution becomes stationary in the limit of n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, i.e. limn→∞Pk,n(Δ)=Pk(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty } P_{k,n}(\varDelta )=P_k(\varDelta )$$\end{document}. We obtain an explicit expression for its first moment E[Δk]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}[\varDelta _{k}]$$\end{document}, valid for any k and jump distribution f(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\eta )$$\end{document} with μ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >1$$\end{document}, and show that it exhibits a universal algebraic decay E[Δk]∼k1/μ-1Γ1-1/μ/π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {E}[\varDelta _{k}]\sim k^{1/\mu -1} \varGamma \left( 1-1/\mu \right) /\pi $$\end{document} for large k. Furthermore, for μ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >1$$\end{document}, we show that in the limit of k→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\rightarrow \infty $$\end{document} the stationary distribution exhibits a universal scaling form Pk(Δ)∼k1-1/μPμ(k1-1/μΔ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k(\varDelta ) \sim k^{1-1/\mu } \mathcal {P}_\mu (k^{1-1/\mu }\varDelta )$$\end{document} which depends only on the Lévy index μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, but not on the details of the jump distribution. We compute explicitly the limiting scaling function Pμ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}_\mu (x)$$\end{document} in terms of Mittag–Leffler functions. For 1<μ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< \mu <2$$\end{document}, we show that, while this scaling function captures the distribution of the typical gaps on the scale k1/μ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{1/\mu -1}$$\end{document}, the atypical large gaps are not described by this scaling function since they occur at a larger scale of order k1/μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{1/\mu }$$\end{document}. This atypical part of the distribution is reminiscent of a “condensation bump” that one often encounters in several mass transport models.
引用
收藏
相关论文
共 50 条
  • [21] From Brownian motion to self-avoiding walks and Lévy flights
    Christian von Ferber
    Yurij Holovatch
    Ihor Mryglod
    Gleb Oshanin
    The European Physical Journal Special Topics, 2013, 216 : 1 - 2
  • [22] Random Walks in a One-Dimensional Lévy Random Environment
    Alessandra Bianchi
    Giampaolo Cristadoro
    Marco Lenci
    Marilena Ligabò
    Journal of Statistical Physics, 2016, 163 : 22 - 40
  • [23] Random Walks in a One-Dimensional L,vy Random Environment
    Bianchi, Alessandra
    Cristadoro, Giampaolo
    Lenci, Marco
    Ligabo, Marilena
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (01) : 22 - 40
  • [24] Mussels realize Weierstrassian Lévy walks as composite correlated random walks
    Andy M. Reynolds
    Scientific Reports, 4
  • [25] Approximation of quantum Lévy processes by quantum random walks
    Uwe Franz
    Adam Skalski
    Proceedings Mathematical Sciences, 2008, 118 : 281 - 288
  • [26] Ratio Limit Theorems for Random Walks and Lévy Processes
    Minzhi Zhao
    Jiangang Ying
    Potential Analysis, 2005, 23 : 357 - 380
  • [27] Catalan random walks and flights
    Chin, CH
    Ching, HT
    CHINESE JOURNAL OF PHYSICS, 1996, 34 (06) : 1330 - 1335
  • [28] L,vy flights and L,vy-Schrodinger semigroups
    Garbaczewski, Piotr
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2010, 8 (05): : 699 - 708
  • [29] Geodesic Lévy flights and expected stopping time for random searches
    Chaubet, Yann
    Bonthonneau, Yannick Guedes
    Lefeuvre, Thibault
    Tzou, Leo
    PROBABILITY THEORY AND RELATED FIELDS, 2025, 191 (1-2) : 235 - 285
  • [30] Record statistics of a strongly correlated time series: random walks and Levy flights
    Godreche, Claude
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (33)