On the structural stability and oxygen permeation behavior of inorganic SrCo0.8Fe0.2O3−δ membranes

被引:0
|
作者
Vijay Kumar Kashyap
Shivendra Kumar Jaiswal
Jitendra Kumar
机构
[1] Indian Institute of Technology Kanpur,Materials Science Programme
[2] NIT,Department of Physics
来源
Ionics | 2016年 / 22卷
关键词
Sol-Gel; Phase formation; XPS; Electrical conductivity; Oxygen permeation;
D O I
暂无
中图分类号
学科分类号
摘要
The high oxygen permeability combined with reasonable structural stability of perovskite-type ABO3−δ compounds is vital for their potential applications in gas separation, solid oxide fuel cells, sensors, etc. Hence, an attempt is made to develop SrCo0.8Fe0.2O3−δ-based dense membranes with sol-gel-derived oxalates and study their phase stability and oxygen permeation. While X-ray diffraction confirms the presence of a perovskite-type cubic phase above 800 °C, X-ray photoelectron spectroscopy reveals the presence of cobalt and iron in 3+ and 4+ oxidation states with O22−, O2− and O− species. The electrical conductivity increases up to a characteristic temperature and decreases slowly thereafter via pronounced carrier scattering. A 1.5-mm-thick membrane displays reasonable oxygen permeability of 1.05 × 10−6 mol cm−2 s−1 at 900 °C but has inadequate stability. Partial substitution of iron with zirconium is shown to improve permeability and stability significantly. Thus, SrCo0.8Fe0.15Zr0.05O3−δ membrane shows promise for oxygen permeation purposes.
引用
收藏
页码:2471 / 2485
页数:14
相关论文
共 50 条
  • [31] A Comparative Study of the Performance of SrCo0.76Fe0.19Al0.1Ox and (SrCo0.8Fe0.2O3)0.95(SrAl2O4)0.05 Mixed-Conducting Membranes
    Zhu, Na
    Zhang, Guangru
    Liu, Zhengkun
    Dong, Xueliang
    Jin, Wanqin
    Liu, Shaomin
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (04) : 1285 - 1291
  • [32] Role of oxygen vacancies and Sr sites in SrCo0.8Fe0.2O3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants
    Li Yang
    Yong Jiao
    Dongyan Jia
    Yanzhi Li
    Chuanhua Liao
    ChineseJournalofChemicalEngineering, 2021, 40 (12) : 269 - 277
  • [33] Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane
    Shao, ZP
    Yang, WS
    Cong, Y
    Dong, H
    Tong, JH
    Xiong, GX
    JOURNAL OF MEMBRANE SCIENCE, 2000, 172 (1-2) : 177 - 188
  • [34] Influence of the size of doping ion on phase stability and oxygen permeability of SrCo0.8Fe0.2O3-δ oxide
    Tan, L
    Yang, L
    Gu, XH
    Jin, WQ
    Zhang, LX
    Xu, NP
    JOURNAL OF MEMBRANE SCIENCE, 2004, 230 (1-2) : 21 - 27
  • [35] Oxygen permeability and stability of Al2O3-doped SrCo0.8Fe0.2O3-δ mixed conducting oxides
    Wu, Zhentao
    Jin, Wanqin
    Xu, Nanping
    JOURNAL OF MEMBRANE SCIENCE, 2006, 279 (1-2) : 320 - 327
  • [36] Oxygen permeability, thermal expansion and stability of SrCo0.8Fe0.2O3-δ-SrAl2O4 Composites
    Yaremchenko, A. A.
    Kharton, V. V.
    Avdeev, M.
    Shaula, A. L.
    Marques, F. M. B.
    SOLID STATE IONICS, 2007, 178 (19-20) : 1205 - 1217
  • [37] Oxygen permeation and stability study of (La0.6Ca0.4)0.98(Co0.8Fe0.2)O3-δ membranes
    Salehi, M.
    Sogaard, M.
    Esposito, V.
    Foghmoes, S. P. V.
    Persoon, E. S.
    Schroeder, M.
    Hendriksen, P. V.
    JOURNAL OF MEMBRANE SCIENCE, 2017, 542 : 245 - 253
  • [38] Processing of dense La0.2Sr0.8Fe0.8Cr0.2O3-δ oxygen membranes
    George, C
    Majkic, G
    Lo, W
    Salama, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 83 (1-3): : 198 - 203
  • [39] Phase stability and oxygen non-stoichiometry of SrCo0.8Fe0.2O3-δ measured by in situ neutron diffraction
    McIntosh, Steven
    Vente, Jaap F.
    Haije, Wim G.
    Blank, Dave H. A.
    Bouwmeester, Henny J. M.
    SOLID STATE IONICS, 2006, 177 (9-10) : 833 - 842
  • [40] Influence of nitric oxide on the oxygen permeation behavior of La0.6Sro0.4Co0.2Fe0.8O3 - δ perovskite membranes
    Gao, Jian
    Lun, Yutai
    Han, Ning
    Tan, Xiaoyao
    Fan, Chunyan
    Liu, Shaomin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 210 : 900 - 906