Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections

被引:0
|
作者
Young-Gon Kim
Sungchul Kim
Cristina Eunbee Cho
In Hye Song
Hee Jin Lee
Soomin Ahn
So Yeon Park
Gyungyub Gong
Namkug Kim
机构
[1] Seoul National University Hospital,Transdisciplinary Department of Medicine & Advanced Technology
[2] University of Ulsan College of Medicine,Department of Convergence Medicine, Asan Institute of Life Science
[3] Asan Medical Center,Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine
[4] The Catholic University of Korea,Department of Pathology
[5] University of Ulsan,Department of Pathology, Seoul National University Bundang Hospital
[6] College of Medicine,undefined
[7] Asan Medical Center,undefined
[8] Seoul National University College of Medicine,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.
引用
收藏
相关论文
共 50 条
  • [21] Deep convolutional recurrent neural network with transfer learning for hyperspectral image classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Wan, Gang
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02)
  • [22] Transfer learning with deep convolutional neural network for constitution classification with face image
    Er-Yang Huan
    Gui-Hua Wen
    Multimedia Tools and Applications, 2020, 79 : 11905 - 11919
  • [23] Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network
    He, Xin
    Chen, Yushi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3246 - 3263
  • [24] Food Cuisine Classification by Convolutional Neural Network based Transfer Learning Approach
    Patil, Priyadarshini C.
    Burkapalli, Vishwanath C.
    2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,
  • [25] Crop pest classification based on deep convolutional neural network and transfer learning
    Thenmozhi, K.
    Reddy, U. Srinivasulu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
  • [26] Classification of Breast Abnormalities Using a Deep Convolutional Neural Network and Transfer Learning
    A. N. Ruchai
    V. I. Kober
    K. A. Dorofeev
    V. N. Karnaukhov
    M. G. Mozerov
    Journal of Communications Technology and Electronics, 2021, 66 : 778 - 783
  • [27] Persian Traffic Sign Classification Using Convolutional Neural Network and Transfer Learning
    Safavi, Seyed Mahdi
    Seyedarabi, Hadi
    Afrouzian, Reza
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (02) : 775 - 784
  • [28] Brain Tumor Classification Using Deep Neural Network and Transfer Learning
    Kumar, Sandeep
    Choudhary, Shilpa
    Jain, Arpit
    Singh, Karan
    Ahmadian, Ali
    Bajuri, Mohd Yazid
    BRAIN TOPOGRAPHY, 2023, 36 (03) : 305 - 318
  • [29] Brain Tumor Classification Using Deep Neural Network and Transfer Learning
    Sandeep Kumar
    Shilpa Choudhary
    Arpit Jain
    Karan Singh
    Ali Ahmadian
    Mohd Yazid Bajuri
    Brain Topography, 2023, 36 : 305 - 318
  • [30] Brain Tumor Classification Using Convolutional Neural Network
    Abiwinanda, Nyoman
    Hanif, Muhammad
    Hesaputra, S. Tafwida
    Handayani, Astri
    Mengko, Tati Rajab
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 183 - 189