A nine nodes solid-shell finite element with enhanced pinching stress

被引:0
|
作者
Mouhamadou Dia
Nahiene Hamila
Mickaël Abbas
Anthony Gravouil
机构
[1] EDF R&D ERMES and IMSIA,
[2] UMR EDF/CNRS/CEA/ENSTA 9219,undefined
[3] Univ Lyon,undefined
[4] INSA-Lyon,undefined
[5] CNRS UMR 5259,undefined
[6] LaMCoS,undefined
来源
Computational Mechanics | 2020年 / 65卷
关键词
Solid-Shell; 3D Constitutive law; Improved normal stress; Robust stabilization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a low-order solid-shell element formulation—having only displacement degrees of freedom (DOFs), i.e., without rotational DOFs. The element has an additional middle node, that allows efficient and accurate analyses of shell structures using elements at extremely high aspect ratio. The formulation is based on the Hu–Washizu variational principle leading to a novel enhancing strain and stress tensor that renders the computation particularly efficient, with improved in-plane and out-of-plane bending behavior (Poisson thickness locking). The middle-node is endowed with only one degree of freedom, in the thickness direction, allowing the assumption of a quadratic interpolation of the transverse displacement. Unlike solid-shell finite elements reported previously in the literature and formulated under the hypothesis of plane stress or with enhanced assumed strain parameter, the new solid-shell element here mentioned uses a complete three-dimensional constitutive law and gives an enhanced pinching stress, thanks to the middle-node. Moreover, to handle the various locking problems that usually arise on solid-shell formulation, the reduced integration technique is used as well as the assumed shear strain method. Finally to assess the effectiveness and performance of this new formulation, a set of popular benchmark problems, involving geometric non-linear analysis as well as elastic-plastic behavior has been investigated.
引用
收藏
页码:1377 / 1395
页数:18
相关论文
共 50 条
  • [1] A nine nodes solid-shell finite element with enhanced pinching stress
    Dia, Mouhamadou
    Hamila, Nahiene
    Abbas, Mickael
    Gravouil, Anthony
    [J]. COMPUTATIONAL MECHANICS, 2020, 65 (05) : 1377 - 1395
  • [2] An enhanced layerwise finite element using a robust solid-shell formulation approach
    R. A. S. Moreira
    R. J. Alves de Sousa
    R. A. Fontes Valente
    [J]. International Journal of Material Forming, 2009, 2
  • [3] AN ENHANCED LAYERWISE FINITE ELEMENT USING A ROBUST SOLID-SHELL FORMULATION APPROACH
    Moreira, R. A. S.
    Alves de Sousa, R. J.
    Fontes Valente, R. A.
    [J]. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 : 881 - 885
  • [4] Finite Rotation Piezoelectric Exact Geometry Solid-Shell Element with Nine Degrees of Freedom per Node
    Kulikov, G. M.
    Plotnikova, S. V.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2011, 23 (03): : 233 - 264
  • [5] Finite element simulation of welding processes using a solid-shell element
    Choi, K.
    Im, S.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (04)
  • [6] Fabric drape simulation by solid-shell finite element method
    Sze, K. Y.
    Liu, X. H.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (11-12) : 819 - 838
  • [7] A GPU Based Explicit Solid-Shell Finite Element Solver
    Stephan, Andrew J. E.
    Daniel, William J. T.
    Elford, Michael C.
    [J]. NUMISHEET 2018: 11TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES, 2018, 1063
  • [8] A novel versatile multilayer hybrid stress solid-shell element
    K. Rah
    W. Van Paepegem
    J. Degrieck
    [J]. Computational Mechanics, 2013, 51 : 825 - 841
  • [9] A novel versatile multilayer hybrid stress solid-shell element
    Rah, K.
    Van Paepegem, W.
    Degrieck, J.
    [J]. COMPUTATIONAL MECHANICS, 2013, 51 (06) : 825 - 841
  • [10] A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I - solid-shell element formulation
    Sze, KY
    Yao, LQ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (04) : 545 - 564