Controlling Canard Cycles

被引:0
|
作者
Hildeberto Jardón-Kojakhmetov
Christian Kuehn
机构
[1] Mathematical Physics – Bernoulli Institute,University of Groningen, Faculty of Science and Engineering, Dynamical Systems, Geometry &
[2] Zentrum Mathematik,Technische Universität München, Forschungseinheit Dynamics
关键词
Canard cycles; Singular perturbations; Feedback control; 34E17; 93C70; 93D15;
D O I
暂无
中图分类号
学科分类号
摘要
Canard cycles are periodic orbits that appear as special solutions of fast-slow systems (or singularly perturbed ordinary differential equations). It is well known that canard cycles are difficult to detect, hard to reproduce numerically, and that they are sensible to exponentially small changes in parameters. In this paper, we combine techniques from geometric singular perturbation theory, the blow-up method, and control theory, to design controllers that stabilize canard cycles of planar fast-slow systems with a folded critical manifold. As an application, we propose a controller that produces stable mixed-mode oscillations in the van der Pol oscillator.
引用
收藏
页码:517 / 544
页数:27
相关论文
共 50 条
  • [1] Controlling Canard Cycles
    Jardon-Kojakhmetov, Hildeberto
    Kuehn, Christian
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (03) : 517 - 544
  • [2] BIRTH OF CANARD CYCLES
    Dumortier, Freddy
    Roussarie, Robert
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (04): : 723 - 781
  • [3] Canard cycles and center manifolds
    Dumortier, F
    Roussarie, R
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 121 (577) : 1 - &
  • [4] CANARD CYCLES IN GLOBAL DYNAMICS
    Vidal, Alexandre
    Francoise, Jean-Pierre
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (02):
  • [5] The dud canard: Existence of strong canard cycles in R3
    Kristiansen, K. Uldall
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 375 : 706 - 749
  • [6] Canard cycles with two breaking parameters
    Dumortier, Freddy
    Roussarie, Robert
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (04) : 787 - 806
  • [7] Canard cycles in aircraft ground dynamics
    J. Rankin
    M. Desroches
    B. Krauskopf
    M. Lowenberg
    [J]. Nonlinear Dynamics, 2011, 66 : 681 - 688
  • [8] Box Dimension and Cyclicity of Canard Cycles
    Huzak, Renato
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (02) : 475 - 493
  • [9] Box Dimension and Cyclicity of Canard Cycles
    Renato Huzak
    [J]. Qualitative Theory of Dynamical Systems, 2018, 17 : 475 - 493
  • [10] Canard cycles in aircraft ground dynamics
    Rankin, J.
    Desroches, M.
    Krauskopf, B.
    Lowenberg, M.
    [J]. NONLINEAR DYNAMICS, 2011, 66 (04) : 681 - 688