Reference-lines-steered memetic multi-objective evolutionary algorithm with adaptive termination criterion

被引:0
|
作者
Riddhiman Saikia
Deepak Sharma
机构
[1] Indian Institute of Technology,Department of Mechanical Engineering
来源
Memetic Computing | 2021年 / 13卷
关键词
Multi-objective optimization; Hybrid evolutionary algorithm; Memetic evolutionary algorithm; Reference lines; Adaptive termination condition;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-objective evolutionary algorithms (MOEAs) have been the choice for generating a set of Pareto-optimal (PO) solutions in one run. However, these algorithms sometimes suffer slow and poor convergence toward the PO front. One of the remedies to improve their convergence is to couple global search of MOEAs with local search. However, such coupling brings other implementation challenges, such as what, when, and how many solutions can be chosen for local search with MOEAs? In this paper, these challenges are addressed by developing a local search module that can choose solutions for local search using a set of reference lines. The heuristic strategies are also developed with the module for determining the frequency of executing local search and for terminating MOEA adaptively using a statistical performance indicator. The proposed algorithm, which is referred to as RM2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {RM}}^2$$\end{document}OEA, is tested on 2-objective ZDT and 3-objective DTLZ test problems. Results demonstrate faster and improved convergence of RM2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {RM}}^2$$\end{document}OEA over a benchmark MOEA from the literature.
引用
收藏
页码:49 / 67
页数:18
相关论文
共 50 条
  • [31] A Memetic Algorithm for multi-objective fixture layout optimization
    Bai, Xue
    Hu, Fei
    He, Gaiyun
    Ding, Bohui
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2015, 229 (16) : 3047 - 3058
  • [32] Multi-Objective Community Detection Based on Memetic Algorithm
    Wu, Peng
    Pan, Li
    PLOS ONE, 2015, 10 (05):
  • [33] Multi-Objective Chaos Memetic Algorithm for DTLZ Problems
    Ammaruekarat, Paranya
    Meesad, Phayung
    FUTURE INFORMATION TECHNOLOGY, 2011, 13 : 96 - 100
  • [34] Multi-Objective Chaos Memetic Algorithm for DTLZ Problems
    Ammaruekarat, Paranya
    Meesad, Phayung
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 3676 - +
  • [35] Guest editorial: Memetic Algorithms for Evolutionary Multi-Objective Optimization
    Ke Tang
    Kay Chen Tan
    Hisao Ishibuchi
    Memetic Computing, 2010, 2 (1) : 1 - 1
  • [36] A multi-objective memetic algorithm for intelligent feature extraction
    Radtke, PVW
    Wong, T
    Sabourin, R
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 767 - 781
  • [37] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [38] Expensive Multi-Objective Evolutionary Algorithm with Multi-Objective Data Generation
    Li J.-Y.
    Zhan Z.-H.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (05): : 896 - 908
  • [39] Multi-objective concordance evolutionary algorithm
    Cui, Xun-Xue
    Li, Miao
    Fang, Ting-Jian
    Jisuanji Xuebao/Chinese Journal of Computers, 2001, 24 (09): : 979 - 984
  • [40] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891