An analytical framework for optimizing variant discovery from personal genomes

被引:0
|
作者
Gareth Highnam
Jason J. Wang
Dean Kusler
Justin Zook
Vinaya Vijayan
Nir Leibovich
David Mittelman
机构
[1] Gene by Gene Ltd,Biosystems and Biomaterials Division
[2] National Institute of Standards and Technology,undefined
[3] Virginia Bioinformatics Institute,undefined
[4] Virginia Tech,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The standardization and performance testing of analysis tools is a prerequisite to widespread adoption of genome-wide sequencing, particularly in the clinic. However, performance testing is currently complicated by the paucity of standards and comparison metrics, as well as by the heterogeneity in sequencing platforms, applications and protocols. Here we present the genome comparison and analytic testing (GCAT) platform to facilitate development of performance metrics and comparisons of analysis tools across these metrics. Performance is reported through interactive visualizations of benchmark and performance testing data, with support for data slicing and filtering. The platform is freely accessible at http://www.bioplanet.com/gcat.
引用
收藏
相关论文
共 50 条
  • [21] A simple analytical framework for location management in personal communication systems
    Tonguz, OK
    Mishra, S
    Jung, HW
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1998, 47 (02) : 428 - 439
  • [22] Cue: a deep-learning framework for structural variant discovery and genotyping
    Victoria Popic
    Chris Rohlicek
    Fabio Cunial
    Iman Hajirasouliha
    Dmitry Meleshko
    Kiran Garimella
    Anant Maheshwari
    Nature Methods, 2023, 20 : 559 - 568
  • [23] Cue: a deep-learning framework for structural variant discovery and genotyping
    Popic, Victoria
    Rohlicek, Chris
    Cunial, Fabio
    Hajirasouliha, Iman
    Meleshko, Dmitry
    Garimella, Kiran
    Maheshwari, Anant
    NATURE METHODS, 2023, 20 (04) : 559 - 568
  • [24] A scalable analytical approach from bacterial genomes to epidemiology
    Didelot, Xavier
    Parkhill, Julian
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 377 (1861)
  • [25] Optimizing resource allocation for HIV/AIDS prevention programmes: an analytical framework
    Bautista-Arredondo, Sergio
    Gadsden, Paola
    Harris, Jeffrey E.
    Bertozzi, Stefano M.
    AIDS, 2008, 22 : S67 - S74
  • [26] Optimizing Podcast Discovery: Unveiling Amazon Music's Retrieval and Ranking Framework
    Aluri, Geetha S.
    Greyson, Paul
    Delgado, Joaquin
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1036 - 1038
  • [27] NetSig: network-based discovery from cancer genomes
    Horn, Heiko
    Lawrence, Michael S.
    Chouinard, Candace R.
    Shrestha, Yashaswi
    Hu, Jessica Xin
    Worstell, Elizabeth
    Shea, Emily
    Ilic, Nina
    Kim, Eejung
    Kamburov, Atanas
    Kashani, Alireza
    Hahn, William C.
    Campbell, Joshua D.
    Boehm, Jesse S.
    Getz, Gad
    Lage, Kasper
    NATURE METHODS, 2018, 15 (01) : 61 - +
  • [28] NetSig: Network-based discovery from cancer genomes
    Horn H.
    Lawrence M.S.
    Chouinard C.R.
    Shrestha Y.
    Hu J.X.
    Worstell E.
    Shea E.
    Ilic N.
    Kim E.
    Kamburov A.
    Kashani A.
    Hahn W.C.
    Campbell J.D.
    Boehm J.S.
    Getz G.
    Lage K.
    Nature Methods, 2018, 15 (1) : 61 - 66
  • [29] Optimizing resource allocation for HIV prevention programs: proof of concept of an analytical framework using data from Mexico
    Salas-Ortiz, A.
    La Hera-Fuentes, G.
    Bautista-Arredondo, S. A.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2018, 21 : 53 - 53
  • [30] Chimera: An Analytical Optimizing Framework for Effective Compute-intensive Operators Fusion
    Zheng, Size
    Chen, Siyuan
    Song, Peidi
    Chen, Renze
    Li, Xiuhong
    Yan, Shengen
    Lin, Dahua
    Leng, Jingwen
    Liang, Yun
    2023 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE, HPCA, 2023, : 1113 - 1126