Stochastic optimization on complex variables and pure-state quantum tomography

被引:0
|
作者
A. Utreras-Alarcón
M. Rivera-Tapia
S. Niklitschek
A. Delgado
机构
[1] Universidad de Concepción,Instituto Milenio de Investigación en Óptica
[2] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Física
[3] Universidad de Concepción,Facultad de Ciencias Físicas y Matemáticas, Departamento de Estadística
来源
Scientific Reports | / 9卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Real-valued functions of complex arguments violate the Cauchy-Riemann conditions and, consequently, do not have Taylor series expansion. Therefore, optimization methods based on derivatives cannot be directly applied to this class of functions. This is circumvented by mapping the problem to the field of the real numbers by considering real and imaginary parts of the complex arguments as the new independent variables. We introduce a stochastic optimization method that works within the field of the complex numbers. This has two advantages: Equations on complex arguments are simpler and easy to analyze and the use of the complex structure leads to performance improvements. The method produces a sequence of estimates that converges asymptotically in mean to the optimizer. Each estimate is generated by evaluating the target function at two different randomly chosen points. Thereby, the method allows the optimization of functions with unknown parameters. Furthermore, the method exhibits a large performance enhancement. This is demonstrated by comparing its performance with other algorithms in the case of quantum tomography of pure states. The method provides solutions which can be two orders of magnitude closer to the true minima or achieve similar results as other methods but with three orders of magnitude less resources.
引用
收藏
相关论文
共 50 条
  • [41] Unambiguous pure-state identification without classical knowledge
    Hayashi, A
    Horibe, M
    Hashimoto, T
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [42] Classification of nonasymptotic bipartite pure-state entanglement transformations
    Bandyopadhyay, S
    Roychowdhury, V
    Sen, U
    PHYSICAL REVIEW A, 2002, 65 (05): : 523151 - 523154
  • [43] Minimal conditions for local pure-state entanglement manipulation
    Jonathan, D
    Plenio, MB
    PHYSICAL REVIEW LETTERS, 1999, 83 (07) : 1455 - 1458
  • [44] Exact and asymptotic measures of multipartite pure-state entanglement
    Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63):
  • [45] The best approximation of a given qubit state with the limited pure-state set
    Zhang, Li-qiang
    Yu, Deng-hui
    Yu, Chang-shui
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (08)
  • [46] Three-qubit pure-state canonical forms
    Acín, A
    Andrianov, A
    Jané, E
    Tarrach, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35): : 6725 - 6739
  • [47] Exact and asymptotic measures of multipartite pure-state entanglement
    Bennett, CH
    Popescu, S
    Rohrlich, D
    Smolin, JA
    Thapliyal, AV
    PHYSICAL REVIEW A, 2001, 63 (01):
  • [48] VIOLATION OF THE PURE-STATE CONDITION BY THE CLASSICALLY EVOLVED WIGNER FUNCTION
    MUGA, JG
    SNIDER, RF
    EUROPHYSICS LETTERS, 1992, 19 (07): : 569 - 573
  • [49] Non-reachable target states for pure-state controllable and non-controllable quantum systems
    Schirmer, SG
    Solomon, AL
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2605 - 2606
  • [50] Approximate transformations and robust manipulation of bipartite pure-state entanglement
    Vidal, G
    Jonathan, D
    Nielsen, MA
    PHYSICAL REVIEW A, 2000, 62 (01): : 10