Surface roughness affects the near-wall fluid velocity profile and surface drag, and is commonly quantified by the equivalent sand-grain roughness ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document}. It is essential to estimate ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document} for accurate fluid dynamic problem modeling. While numerous roughness correlation formulas have been proposed to predict ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document} in the fully rough regime, most of them are restricted to certain roughness types, with various geometric parameters considered in each case, leading to ongoing disagreements regarding its parameterization and lack of universality. In this study, a Particle Swarm Optimized Backpropagation (PSO-BP) method is proposed to predict ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document} based on the selected surface parameters from previous DNS, LES, and experimental results for flow behavior over various surface roughness. The PSO-BP model’s ability to predict ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document} in the fully rough region is evaluated and compared with both the existing roughness correction formulas as well as the traditional BP model. An optimized polynomial function is also proposed to serve as a ‘white box’ for predicting ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document}. It turns out that the PSO-BP method has better performance in the evaluation metrics compared to other methods, yielding a Mean Absolute Error (MAE) of 0.0390, a Mean Squared Error (MSE) of 0.0026 and a Mean Absolute Percentage Error (MAPE) of 28.12%. This novel approach for estimating ks\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{s}$$\end{document} has practical applicability and holds promise for improving the precision and efficiency of calculations related to equivalent sand-grain roughness, and thus provides more accurate and effective solutions for CFD and other engineering applications.