Data-driven prediction of the equivalent sand-grain roughness

被引:0
|
作者
Haoran Ma
Yuhao Li
Xin Yang
Lili Ye
机构
[1] Texas A&M University,Department of Ocean Engineering
[2] Texas A&M University,Department of Oceanography
[3] Wuhan University of Technology,School of Naval Architecture, Ocean and Energy Power Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Surface roughness affects the near-wall fluid velocity profile and surface drag, and is commonly quantified by the equivalent sand-grain roughness ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document}. It is essential to estimate ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} for accurate fluid dynamic problem modeling. While numerous roughness correlation formulas have been proposed to predict ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} in the fully rough regime, most of them are restricted to certain roughness types, with various geometric parameters considered in each case, leading to ongoing disagreements regarding its parameterization and lack of universality. In this study, a Particle Swarm Optimized Backpropagation (PSO-BP) method is proposed to predict ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} based on the selected surface parameters from previous DNS, LES, and experimental results for flow behavior over various surface roughness. The PSO-BP model’s ability to predict ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} in the fully rough region is evaluated and compared with both the existing roughness correction formulas as well as the traditional BP model. An optimized polynomial function is also proposed to serve as a ‘white box’ for predicting ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document}. It turns out that the PSO-BP method has better performance in the evaluation metrics compared to other methods, yielding a Mean Absolute Error (MAE) of 0.0390, a Mean Squared Error (MSE) of 0.0026 and a Mean Absolute Percentage Error (MAPE) of 28.12%. This novel approach for estimating ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k}_{s}$$\end{document} has practical applicability and holds promise for improving the precision and efficiency of calculations related to equivalent sand-grain roughness, and thus provides more accurate and effective solutions for CFD and other engineering applications.
引用
收藏
相关论文
共 50 条
  • [1] Data-driven prediction of the equivalent sand-grain roughness
    Ma, Haoran
    Li, Yuhao
    Yang, Xin
    Ye, Lili
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Prediction of equivalent sand-grain size and identification of drag-relevant scales of roughness - a data-driven approach
    Yang, Jiasheng
    Stroh, Alexander
    Lee, Sangseung
    Bagheri, Shervin
    Frohnapfel, Bettina
    Forooghi, Pourya
    [J]. JOURNAL OF FLUID MECHANICS, 2023, 975
  • [3] Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows
    Aghaei Jouybari, Mostafa
    Yuan, Junlin
    Brereton, Giles J.
    Murillo, Michael S.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 912
  • [4] Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows
    Aghaei Jouybari M.
    Yuan J.
    Brereton G.J.
    Murillo M.S.
    [J]. Journal of Fluid Mechanics, 2021, 912
  • [5] Assessment of uncertainty in equivalent sand-grain roughness methods
    Bhatt, Chinmay P.
    McClain, Stephen T.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 8, PTS A AND B: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, 2008, : 719 - 728
  • [6] Estimation of Equivalent Sand-Grain Roughness for Coated Water Supply Pipes
    Guo, Xinlei
    Wang, Tao
    Yang, Kailin
    Fu, Hui
    Guo, Yongxin
    Li, Jiazhen
    [J]. JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE, 2020, 11 (01)
  • [7] COMPARATIVE ASSESSMENT OF PUBLISHED MODELS FOR EQUIVALENT SAND-GRAIN ROUGHNESS HEIGHT BASED ON SURFACE STATISTICS
    Samal, Sangram K.
    Saha, Sandip K.
    [J]. 8TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, 2023, : 1195 - 1198
  • [8] Fractal expression of sand grain equivalent roughness
    [J]. Zhong, L. (zlcqjtu@163.com), 1600, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press (24):
  • [9] Revisiting rough-wall turbulent boundary layers over sand-grain roughness
    Gul, M.
    Ganapathisubramani, B.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 911
  • [10] SAND-GRAIN ORIENTATION AND GEOLOGICAL APPLICATION
    RUSNAK, GA
    [J]. JOURNAL OF PALEONTOLOGY, 1956, 30 (04) : 996 - 996