The microtubule cytoskeleton in cardiac mechanics and heart failure

被引:0
|
作者
Matthew A. Caporizzo
Benjamin L. Prosser
机构
[1] University of Vermont Larner College of Medicine,Department of Molecular Physiology and Biophysics
[2] University of Pennsylvania Perelman School of Medicine,Department of Physiology, Pennsylvania Muscle Institute
来源
Nature Reviews Cardiology | 2022年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the ‘tubulin code’ have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation–contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.
引用
收藏
页码:364 / 378
页数:14
相关论文
共 50 条
  • [41] Cardiac resynchronization in heart failure
    Hoppe, UC
    Erdmann, E
    [J]. DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2002, 127 (13) : 677 - 681
  • [42] Cardiac calsequestrin and heart failure
    Neumann, J.
    Fahrion, C.
    Fabian, S.
    Gergs, U.
    [J]. ACTA PHYSIOLOGICA, 2014, 211 : 44 - 44
  • [43] Cardiac function and heart failure
    Pauly, DF
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (11) : 24B - +
  • [44] Heart failure and cardiac hypertrophy
    Rame J.E.
    Dries D.L.
    [J]. Current Treatment Options in Cardiovascular Medicine, 2007, 9 (4) : 289 - 301
  • [45] Cardiac rehabilitation in heart failure
    Altenberger J.
    [J]. Wiener Medizinische Wochenschrift, 2018, 168 (1-2) : 23 - 30
  • [46] CARDIAC OUTPUT IN HEART FAILURE
    SUAREZ, JRE
    FASCIOLO, JC
    TAQUINI, AC
    [J]. AMERICAN HEART JOURNAL, 1946, 32 (03) : 339 - 356
  • [47] CARDIAC RESYNCHRONIZATION IN HEART FAILURE
    Thierer, Jorge
    Bichara, Valentina M.
    [J]. REVISTA DE LA FEDERACION ARGENTINA DE CARDIOLOGIA, 2009, 38 (02): : 53 - 59
  • [48] Cardiac sympathoexcitation in heart failure
    May, Clive N.
    Yao, Song T.
    Booth, Lindsea C.
    Ramchandra, Rohit
    [J]. AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2013, 175 (1-2): : 76 - 84
  • [49] CARDIAC FIBROSIS IN HEART FAILURE
    Taylor, A. J.
    [J]. CARDIOLOGY, 2015, 131 : 201 - 201
  • [50] CARDIAC FAILURE IN A NORMAL HEART
    NOEHREN, TH
    MCKEE, FW
    [J]. ANNALS OF INTERNAL MEDICINE, 1950, 33 (06) : 1485 - 1494