Quantum circuit optimization using quantum Karnaugh map

被引:0
|
作者
J.-H. Bae
Paul M. Alsing
Doyeol Ahn
Warner A. Miller
机构
[1] University of Seoul,Department of Electrical and Computer Engineering
[2] Air Force Research Laboratory,Department of Physics
[3] Information Directorate,undefined
[4] Florida Atlantic University,undefined
[5] Peta Lux Inc.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Every quantum algorithm is represented by set of quantum circuits. Any optimization scheme for a quantum algorithm and quantum computation is very important especially in the arena of quantum computation with limited number of qubit resources. Major obstacle to this goal is the large number of elemental quantum gates to build even small quantum circuits. Here, we propose and demonstrate a general technique that significantly reduces the number of elemental gates to build quantum circuits. This is impactful for the design of quantum circuits, and we show below this could reduce the number of gates by 60% and 46% for the four- and five-qubit Toffoli gates, two key quantum circuits, respectively, as compared with simplest known decomposition. Reduced circuit complexity often goes hand-in-hand with higher efficiency and bandwidth. The quantum circuit optimization technique proposed in this work would provide a significant step forward in the optimization of quantum circuits and quantum algorithms, and has the potential for wider application in quantum computation.
引用
收藏
相关论文
共 50 条
  • [21] Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation
    Younis, Ed
    Iancu, Costin
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 465 - 475
  • [22] Synthesis and optimization by quantum circuit description language
    Zomorodi-Moghadam, Mariam
    Taherkhani, Mohammad-Amin
    Navi, Keivan
    Navi, Keivan (navi@sbu.ac.ir), 1600, Springer Verlag (8911): : 74 - 91
  • [23] KARNAUGH MAP DISPLAY
    CRANK, B
    WIRELESS WORLD, 1971, 77 (1426): : 185 - +
  • [24] Circuit optimization of Grover quantum search algorithm
    Wu, Xi
    Li, Qingyi
    Li, Zhiqiang
    Yang, Donghan
    Yang, Hui
    Pan, Wenjie
    Perkowski, Marek
    Song, Xiaoyu
    QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [25] Circuit depth scaling for quantum approximate optimization
    Akshay, V.
    Philathong, H.
    Campos, E.
    Rabinovich, D.
    Zacharov, I.
    Zhang, Xiao-Ming
    Biamonte, J. D.
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [26] The circuit design and optimization of quantum multiplier and divider
    Hai-Sheng Li
    Ping Fan
    Haiying Xia
    Gui-Lu Long
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [27] Riemannian quantum circuit optimization for Hamiltonian simulation
    Kotil, Ayse
    Banerjee, Rahul
    Huang, Qunsheng
    Mendl, Christian B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (13)
  • [28] Quantum Cost Optimization for Reversible Sequential Circuit
    Al Mamun, Selim
    Menville, David
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (12) : 15 - 21
  • [29] The circuit design and optimization of quantum multiplier and divider
    Hai-Sheng Li
    Ping Fan
    Haiying Xia
    Gui-Lu Long
    Science China(Physics,Mechanics & Astronomy), 2022, (06) : 15 - 29
  • [30] The circuit design and optimization of quantum multiplier and divider
    Li, Hai-Sheng
    Fan, Ping
    Xia, Haiying
    Long, Gui-Lu
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (06)