Ehrhart Series for Connected Simple Graphs

被引:0
|
作者
Tetsushi Matsui
机构
[1] National Institute of Informatics,Principles of Informatics Research Division
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Ehrhart series; Ehrhart polynomial; Hilbert series; Edge polytope; Non-edge-normal graph; Polygon tree; Primary 52C07; Secondary 05A15; 05C25; 13F20;
D O I
暂无
中图分类号
学科分类号
摘要
The Ehrhart ring of the edge polytope \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_G}$$\end{document} for a connected simple graph G is known to coincide with the edge ring of the same graph if G satisfies the odd cycle condition. This paper gives for a graph which does not satisfy the condition, a generating set of the defining ideal of the Ehrhart ring of the edge polytope, described by combinatorial information of the graph. From this result, two factoring properties of the Ehrhart series are obtained; the first one factors out bipartite biconnected components, and the second one factors out a even cycle which shares only one edge with other part of the graph. As an application of the factoring properties, the root distribution of Ehrhart polynomials for bipartite polygon trees is determined.
引用
收藏
页码:617 / 635
页数:18
相关论文
共 50 条
  • [1] Ehrhart Series for Connected Simple Graphs
    Matsui, Tetsushi
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 617 - 635
  • [2] Ehrhart Series of Fractional Stable Set Polytopes of Finite Graphs
    Hamano, Ginji
    Hibi, Takayuki
    Ohsugi, Hidefumi
    ANNALS OF COMBINATORICS, 2018, 22 (03) : 563 - 573
  • [3] Ehrhart Series of Fractional Stable Set Polytopes of Finite Graphs
    Ginji Hamano
    Takayuki Hibi
    Hidefumi Ohsugi
    Annals of Combinatorics, 2018, 22 : 563 - 573
  • [4] Edge Realizability of Connected Simple Graphs
    Hansen, Pierre
    Hertz, Alain
    Sellal, Cherif
    VukieeviC, Damir
    Aouchichel, Mustapha
    Caporossil, Gilles
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 78 (03) : 689 - 712
  • [5] CONNECTED SIMPLE GRAPHS AND A SELECTION PROBLEM
    JONES, FB
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (02) : 300 - 301
  • [6] ON CRITICALLY H-CONNECTED SIMPLE GRAPHS
    HAMIDOUNE, YO
    DISCRETE MATHEMATICS, 1980, 32 (03) : 257 - 262
  • [7] Ehrhart series and lattice triangulations
    Payne, Sam
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (03) : 365 - 376
  • [8] Growth series and Ehrhart series for root lattices
    Bacher, R
    de la Harpe, P
    Venkov, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (11): : 1137 - 1142
  • [9] Ehrhart Series and Lattice Triangulations
    Sam Payne
    Discrete & Computational Geometry, 2008, 40 : 365 - 376