Karamata Integral Representations for Functions Generalizing Regularly Varying Functions

被引:0
|
作者
V. V. Pavlenkov
机构
[1] “Sikorsky Kyiv Polytechnic Institute” Ukrainian National Technical University,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the classes of functions generalizing regularly varying functions and obtain Karamata-type integral representations for these functions.
引用
收藏
页码:1496 / 1505
页数:9
相关论文
共 50 条
  • [41] Integral Representations of Analytic and Harmonic Functions
    Bavrin, I. I.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 364 - 366
  • [42] Integral representations of analytic and harmonic functions
    I. I. Bavrin
    Doklady Mathematics, 2011, 83 : 364 - 366
  • [43] INTEGRAL REPRESENTATIONS OF GENERALIZED HARMONIC FUNCTIONS
    Qiao, Lei
    Pan, Guoshuang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05): : 1503 - 1521
  • [44] ON INTEGRAL-REPRESENTATIONS OF THE COULOMB FUNCTIONS
    BERA, PK
    DAS, U
    BHATTACHARYYA, C
    TALUKDAR, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) : 1403 - 1407
  • [45] Explicit integral representations of implicit functions
    Castro, L. P.
    Murata, K.
    Saitoh, S.
    Yamada, M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2013, 29 (02) : 141 - 148
  • [46] Integral Representations for Bessel Matrix Functions
    Cekim, Bayram
    Erkus-Duman, Esra
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2014, 27 (01): : 663 - 667
  • [47] GENERAL INTEGRAL REPRESENTATIONS OF HOLOMORPHIC FUNCTIONS
    BAVRIN, II
    DOKLADY AKADEMII NAUK SSSR, 1967, 172 (06): : 1251 - &
  • [48] Integral representations for Lommel and Struve functions
    Meijer, CS
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1935, 38 (6/10): : 744 - 749
  • [49] A CONCAVE REGULARLY VARYING LEADER FOR EQUI-CONCAVE FUNCTIONS
    ABAKUMOV, EV
    MEKLER, AA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (03) : 943 - 951
  • [50] Pseudo-Regularly Varying Functions and Generalized Renewal Processes
    Kevei, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 359 - 360