Sharp Exponential Decay Rates for Anisotropically Damped Waves

被引:0
|
作者
Blake Keeler
Perry Kleinhenz
机构
[1] Dalhousie University,Department of Mathematics and Statistics
[2] Michigan State University,Department of Mathematics
来源
Annales Henri Poincaré | 2023年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study energy decay of the damped wave equation on compact Riemannian manifolds where the damping coefficient is anisotropic and modeled by a pseudodifferential operator of order zero. We prove that the energy of solutions decays at an exponential rate if and only if the damping coefficient satisfies an anisotropic analogue of the classical geometric control condition, along with a unique continuation hypothesis. Furthermore, we compute an explicit formula for the optimal decay rate in terms of the spectral abscissa and the long-time averages of the principal symbol of the damping over geodesics, in analogy to the work of Lebeau for the isotropic case. We also construct genuinely anisotropic dampings which satisfy our hypotheses on the flat torus.
引用
收藏
页码:1561 / 1595
页数:34
相关论文
共 50 条
  • [31] General energy decay rates for a weakly damped Timoshenko system
    M. I. Mustafa
    S. A. Messaoudi
    Journal of Dynamical and Control Systems, 2010, 16 : 211 - 226
  • [32] Decay rates for the damped wave equation with finite regularity damping
    Kleinhenz, Perry
    MATHEMATICAL RESEARCH LETTERS, 2022, 29 (04) : 1087 - 1140
  • [33] Rates of decay for structural damped models with decreasing in time coefficients
    Lu, Xiaojun
    Reissig, Michael
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2009, 2 (1-2) : 21 - 55
  • [34] DIFFERENTIABILITY, ANALYTICITY AND OPTIMAL RATES OF DECAY FOR DAMPED WAVE EQUATIONS
    Fatori, Luci Harue
    Zegarra Garay, Maria
    Munoz Rivera, Jaime E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [35] GENERAL ENERGY DECAY RATES FOR A WEAKLY DAMPED TIMOSHENKO SYSTEM
    Mustafa, M. I.
    Messaoudi, S. A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (02) : 211 - 226
  • [36] Numerical exponential decay of thermoelastic waves connected in parallel
    A. J. A. Ramos
    A. D. S. Campelo
    D. S. Almeida Júnior
    M. M. Freitas
    R. C. Barbosa
    Advances in Computational Mathematics, 2023, 49
  • [37] Numerical exponential decay of thermoelastic waves connected in parallel
    Ramos, A. J. A.
    Campelo, A. D. S.
    Almeida Junior, D. S.
    Freitas, M. M.
    Barbosa, R. C.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (03)
  • [38] Exponential decay for a locally damped fifth-order equation posed on the line
    Doronin, G. G.
    Natali, F.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 59 - 72
  • [39] Multivariate igusa theory: Decay rates of exponential sums
    Cluckers, R
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (76) : 4093 - 4108
  • [40] GLOBAL EXISTENCE AND EXPONENTIAL DECAY RATES FOR THE WESTERVELT EQUATION
    Kaltenbacher, Barbara
    Lasiecka, Irena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (03): : 503 - 523