Bounds on 4D conformal and superconformal field theories

被引:0
|
作者
David Poland
David Simmons-Duffin
机构
[1] Harvard University,Jefferson Physical Laboratory
关键词
Supersymmetric gauge theory; Conformal and W Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} superconformal field theories. In any CFT containing a scalar primary ϕ of dimension d we show that crossing symmetry of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left\langle {\phi \phi \phi \phi } \right\rangle $\end{document} implies a completely general lower bound on the central charge c ≥ fc(d). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients τIJ and flavor charges. We extend these bounds to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Φ and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Φ × Φ† OPE, and show that there is an upper bound on the dimension of Φ†Φ when dim Φ is close to 1. We also present even more stringent bounds on c and τIJ. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.
引用
收藏
相关论文
共 50 条
  • [42] Positive energy conditions in 4D conformal field theory
    Farnsworth, Kara
    Luty, Markus A.
    Prilepina, Valentina
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [43] Positive energy conditions in 4D conformal field theory
    Kara Farnsworth
    Markus A. Luty
    Valentina Prilepina
    [J]. Journal of High Energy Physics, 2016
  • [44] Counting chiral primaries in N=1, d=4 superconformal field theories
    Romelsberger, Christian
    [J]. NUCLEAR PHYSICS B, 2006, 747 (03) : 329 - 353
  • [45] Affine SL(2) Conformal Blocks from 4d Gauge Theories
    Luis F. Alday
    Yuji Tachikawa
    [J]. Letters in Mathematical Physics, 2010, 94 : 87 - 114
  • [46] Affine SL(2) Conformal Blocks from 4d Gauge Theories
    Alday, Luis F.
    Tachikawa, Yuji
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2010, 94 (01) : 87 - 114
  • [47] Probe D-branes in superconformal field theories
    Edelstein, Jose D.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2007, 55 (5-7): : 705 - 710
  • [48] 5d superconformal field theories and graphs
    Apruzzi, Fabio
    Lawrie, Craig
    Lin, Ling
    Schafer-Nameki, Sakura
    Wang, Yi-Nan
    [J]. PHYSICS LETTERS B, 2020, 800
  • [49] Superconformal Indices of N=4 SYM Field Theories
    Spiridonov, Vyacheslav P.
    Vartanov, Grigory S.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (01) : 97 - 118
  • [50] R-current three-point functions in 4d N=1 superconformal theories
    Manenti, Andrea
    Stergiou, Andreas
    Vichi, Alessandro
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12):