Interior penalty method for the indefinite time-harmonic Maxwell equations

被引:0
|
作者
Paul Houston
Ilaria Perugia
Anna Schneebeli
Dominik Schötzau
机构
[1] University of Leicester,Department of Mathematics
[2] Università di Pavia,Dipartimento di Matematica
[3] University of Basel,Department of Mathematics
[4] University of British Columbia,Mathematics Department
来源
Numerische Mathematik | 2005年 / 100卷
关键词
65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce and analyze the interior penalty discontinuous Galerkin method for the numerical discretization of the indefinite time-harmonic Maxwell equations in the high-frequency regime. Based on suitable duality arguments, we derive a-priori error bounds in the energy norm and the L2-norm. In particular, the error in the energy norm is shown to converge with the optimal order [inline-graphic not available: see fulltext](hmin{s,ℓ}) with respect to the mesh size h, the polynomial degree ℓ, and the regularity exponent s of the analytical solution. Under additional regularity assumptions, the L2-error is shown to converge with the optimal order [inline-graphic not available: see fulltext](hℓ+1). The theoretical results are confirmed in a series of numerical experiments.
引用
收藏
页码:485 / 518
页数:33
相关论文
共 50 条
  • [31] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [32] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [33] Heterogeneous time-harmonic Maxwell equations in bidimensional domains
    Rodríguez, AA
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 753 - 758
  • [34] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152
  • [36] GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS
    Caro, Pedro
    Zhou, Ting
    ANALYSIS & PDE, 2014, 7 (02): : 375 - 405
  • [37] A discontinuous least squares finite element method for time-harmonic Maxwell equations
    Li, Ruo
    Liu, Qicheng
    Yang, Fanyi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 817 - 839
  • [38] New numerical method for solving time-harmonic Maxwell equations with strong singularity
    Rukavishnikov, Victor A.
    Mosolapov, Andrey O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) : 2438 - 2448
  • [39] Deep Fourier Residual method for solving time-harmonic Maxwell's equations
    Taylor, Jamie M.
    Bastidas, Manuela
    Pardo, David
    Muga, Ignacio
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [40] A Source Transfer Domain Decomposition Method for Time-Harmonic Maxwell's Equations
    Cui, Tao
    Wang, Ziming
    Xiang, Xueshuang
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)