Incremental algorithms for the maximum internal spanning tree problem

被引:0
|
作者
Xianbin Zhu
Wenjun Li
Yongjie Yang
Jianxin Wang
机构
[1] Central South University,School of Computer Science and Engineering
[2] Saarland University,Chair of Economic Theory
[3] Changsha University of Science and Technology,Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation
来源
关键词
maximum internal spanning tree; incremental problem; approximation algorithm; competitive ratio;
D O I
暂无
中图分类号
学科分类号
摘要
The maximum internal spanning tree (MIST) problem is utilized to determine a spanning tree in a graph G, with the maximum number of possible internal vertices. The incremental maximum internal spanning tree (IMIST) problem is the incremental version of MIST whose feasible solutions are edge-sequences e1, e2, …, en−1 such that the first k edges form trees for all k ∈ [n − 1]. A solution’s quality is measured using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{max}_{k \in [n - 1]}}\frac{{\text{opt}(G,k)}}{{\left| {\text{In}({T_k})} \right|}}$$\end{document} with lower being better. Here, opt(G, k) denotes the number of internal vertices in a tree with k edges in G, which has the largest possible number of internal vertices, and ∣In(Tk)∣ is the number of internal vertices in the tree comprising the solution’s first k edges. We first obtained an IMIST algorithm with a competitive ratio of 2, followed by a 12/7-competitive algorithm based on an approximation algorithm for MIST.
引用
收藏
相关论文
共 50 条
  • [41] Efficient algorithms for the inverse spanning-tree problem
    Hochbaum, DS
    OPERATIONS RESEARCH, 2003, 51 (05) : 785 - 797
  • [42] Algorithms for the minimum spanning tree problem with resource allocation
    Kataoka, Seiji
    Yamada, Takeo
    OPERATIONS RESEARCH PERSPECTIVES, 2016, 3 : 5 - 13
  • [43] Exact Algorithms for the Minimum Load Spanning Tree Problem
    Zhu, Xiaojun
    Tang, Shaojie
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (04) : 1431 - 1445
  • [44] Heuristic and exact algorithms for the spanning tree detection problem
    Yamada, T
    Kataoka, S
    Watanabe, K
    COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (02) : 239 - 255
  • [45] Variations of the maximum leaf spanning tree problem for bipartite graphs
    Li, PC
    Toulouse, A
    INFORMATION PROCESSING LETTERS, 2006, 97 (04) : 129 - 132
  • [46] A Family of Spanning-Tree Formulations for the Maximum Cut Problem
    Mallach, Sven
    COMBINATORIAL OPTIMIZATION, ISCO 2024, 2024, 14594 : 43 - 55
  • [47] The maximum-leaf spanning tree problem: Formulations and facets
    Fujie, T
    NETWORKS, 2004, 43 (04) : 212 - 223
  • [48] A SHORT NOTE ON THE APPROXIMABILITY OF THE MAXIMUM LEAVES SPANNING TREE PROBLEM
    GALBIATI, G
    MAFFIOLI, F
    MORZENTI, A
    INFORMATION PROCESSING LETTERS, 1994, 52 (01) : 45 - 49
  • [49] EXACT AND HEURISTIC ALGORITHMS FOR THE OPTIMUM COMMUNICATION SPANNING TREE PROBLEM
    AHUJA, RK
    MURTY, VVS
    TRANSPORTATION SCIENCE, 1987, 21 (03) : 163 - 170
  • [50] Robust discrete spanning tree problem: local search algorithms
    Prabha Sharma
    Sandeep Singh
    Diptesh Ghosh
    R Chandrasekaran
    OPSEARCH, 2022, 59 : 632 - 644