Incremental algorithms for the maximum internal spanning tree problem

被引:0
|
作者
Xianbin Zhu
Wenjun Li
Yongjie Yang
Jianxin Wang
机构
[1] Central South University,School of Computer Science and Engineering
[2] Saarland University,Chair of Economic Theory
[3] Changsha University of Science and Technology,Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation
来源
关键词
maximum internal spanning tree; incremental problem; approximation algorithm; competitive ratio;
D O I
暂无
中图分类号
学科分类号
摘要
The maximum internal spanning tree (MIST) problem is utilized to determine a spanning tree in a graph G, with the maximum number of possible internal vertices. The incremental maximum internal spanning tree (IMIST) problem is the incremental version of MIST whose feasible solutions are edge-sequences e1, e2, …, en−1 such that the first k edges form trees for all k ∈ [n − 1]. A solution’s quality is measured using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{max}_{k \in [n - 1]}}\frac{{\text{opt}(G,k)}}{{\left| {\text{In}({T_k})} \right|}}$$\end{document} with lower being better. Here, opt(G, k) denotes the number of internal vertices in a tree with k edges in G, which has the largest possible number of internal vertices, and ∣In(Tk)∣ is the number of internal vertices in the tree comprising the solution’s first k edges. We first obtained an IMIST algorithm with a competitive ratio of 2, followed by a 12/7-competitive algorithm based on an approximation algorithm for MIST.
引用
收藏
相关论文
共 50 条
  • [1] Incremental algorithms for the maximum internal spanning tree problem
    Zhu, Xianbin
    Li, Wenjun
    Yang, Yongjie
    Wang, Jianxin
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (05)
  • [2] Incremental algorithms for the maximum internal spanning tree problem
    Xianbin ZHU
    Wenjun LI
    Yongjie YANG
    Jianxin WANG
    Science China(Information Sciences), 2021, 64 (05) : 77 - 84
  • [3] Erratum to: Incremental algorithms for the maximum internal spanning tree problem
    Xianbin Zhu
    Wenjun Li
    Yongjie Yang
    Jianxin Wang
    Science China Information Sciences, 2022, 65
  • [4] Incremental algorithms for the maximum internal spanning tree problem (vol 64, 152103, 2021)
    Zhu, Xianbin
    Li, Wenjun
    Yang, Yongjie
    Wang, Jianxin
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [5] Approximation algorithms for the maximum internal spanning tree problem
    Salamon, Gabor
    Mathematical Foundations of Computer Science 2007, Proceedings, 2007, 4708 : 90 - 102
  • [6] Approximation Algorithms for the Maximum Weight Internal Spanning Tree Problem
    Chen, Zhi-Zhong
    Lin, Guohui
    Wang, Lusheng
    Chen, Yong
    Wang, Dan
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 124 - 136
  • [7] Approximation Algorithms for the Maximum Weight Internal Spanning Tree Problem
    Chen, Zhi-Zhong
    Lin, Guohui
    Wang, Lusheng
    Chen, Yong
    Wang, Dan
    ALGORITHMICA, 2019, 81 (11-12) : 4167 - 4199
  • [8] Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Knauer, Martin
    Spoerhase, Joachim
    ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 459 - 470
  • [9] Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Martin Knauer
    Joachim Spoerhase
    Algorithmica, 2015, 71 : 797 - 811
  • [10] Approximation Algorithms for the Maximum Weight Internal Spanning Tree Problem
    Zhi-Zhong Chen
    Guohui Lin
    Lusheng Wang
    Yong Chen
    Dan Wang
    Algorithmica, 2019, 81 : 4167 - 4199