Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India

被引:0
|
作者
Ranjeeta D. Gawhane
Pasumarthi Surya Prakasa Rao
Krishnakant B. Budhavant
Vinayak Waghmare
Dhananjay C. Meshram
Pramod D. Safai
机构
[1] Indian Institute of Tropical Meteorology,Department of Geology
[2] Maldives Climate Observatory-Hanimaadhoo,undefined
[3] Centre for Atmospheric and Oceanic Sciences (CAOS),undefined
[4] Indian Institute of Science,undefined
[5] Savitribai Phule Pune University,undefined
关键词
Air pollution; PM; Chemical composition; Biomass burning; Long range transport;
D O I
暂无
中图分类号
学科分类号
摘要
Particulate matter with size less than or equal to 2.5 μm (PM2.5) samples were collected from an urban site Pune, India, during April 2015 to April 2016. The samples were analyzed for various chemical constituents, including water soluble inorganic ions, organic carbon (OC), and elemental carbon (EC). The yearly mean total mass concentration of PM2.5 at Pune was 37.3 μg/m3, which is almost four times higher than the annual WHO standard (10 μg/m3), and almost equal to that recommended by the Central Pollution Control Board, India (40 μg/m3). Measured (OC, EC) and estimated organic matter (OM) were the dominant component (56 ± 11%) in the total particulate matter which play major role in the regional atmospheric chemistry. Total measured inorganic components formed about 35% of PM2.5. Major chemical contributors to PM2.5 mass were OC (30%), SO42− (13%), and Cl− and EC (9% each). The high ratios of OC/EC demonstrated the existence of secondary organic carbon. The air mass origin and correlations between the various components indicate that long range transport of pollutants from Indo-Gangetic Plain (IGP) and Southern part of the Arabian Peninsula might have contributed to the high aerosol mass during the dry and winter seasons. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterization and source apportionment of PM2.5 aerosol speciation in Pune by applying multiple approaches based on a seasonal perspective. This study is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban environment of particle air pollution over this region.
引用
下载
收藏
页码:21065 / 21072
页数:7
相关论文
共 50 条
  • [21] Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India
    Tobler, Anna
    Bhattu, Deepika
    Canonaco, Francesco
    Lalchandani, Vipul
    Shukla, Ashutosh
    Thamban, Navaneeth M.
    Mishra, Suneeti
    Srivastava, Atul K.
    Bisht, Deewan S.
    Tiwari, Suresh
    Singh, Surender
    Mocnik, Grisa
    Baltensperger, Urs
    Tripathi, Sachchida N.
    Slowik, Jay G.
    Prevot, Andre S. H.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 745
  • [22] CHEMICAL COMPOSITION AND SOURCE APPORTIONMENT OF PM2.5 AT A SUBURBAN SITE IN THE NORTHWESTERN PART OF TURKEY
    Karadeniz, Hatice
    Sagirli, Eda
    Yenisoy-karakas, Serpil
    THERMAL SCIENCE, 2023, 27 (3B): : 2205 - 2214
  • [23] Chemical Composition and Source Apportionment of Wintertime Airborne PM2.5 in Changchun, Northeastern China
    Zhang, Shichun
    Tong, Daniel Q.
    Dan, Mo
    Pang, Xiaobing
    Chen, Weiwei
    Zhang, Xuelei
    Zhao, Hongmei
    Wang, Yiyong
    Shang, Bingnan
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (08)
  • [24] PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment
    Luo, Yuanyuan
    Zhou, Xuehua
    Zhang, Jingzhu
    Xiao, Yan
    Wang, Zhe
    Zhou, Yang
    Wang, Wenxing
    ATMOSPHERIC RESEARCH, 2018, 212 : 285 - 295
  • [25] Chemical composition and source apportionment of PM2.5 in Seoul during 2018-2020
    Jeong, Min Jae
    Hwang, Seung-On
    Yoo, Hee-Jung
    Oh, Sang Min
    Jang, Junhyuk
    Lee, Younjun
    Kim, Taeyun
    Kim, Seongheon
    ATMOSPHERIC POLLUTION RESEARCH, 2024, 15 (06)
  • [26] Chemical composition and source apportionment of Toronto summertime urban fine aerosol (PM2.5)
    Tsai, J
    Owega, S
    Evans, G
    Jervis, R
    Fila, M
    Tan, P
    Malpica, O
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2004, 259 (01) : 193 - 197
  • [27] Seasonal Variation and Source Apportionment of Water-Soluble Ions in PM2.5 in Quanzhou City
    Zhang Y.-F.
    Yu R.-L.
    Hu G.-R.
    Sun J.-W.
    Zhang Z.-W.
    Xu W.-Z.
    Hu, Gong-Ren (grhu@hqu.edu.cn), 2017, Science Press (38): : 4044 - 4053
  • [28] Source apportionment and elemental composition of PM2.5 in Chengdu, China
    Tang, Ya
    Li, Youping
    Zhou, Hong
    Guo, Jialing
    Nature Environment and Pollution Technology, 2019, 18 (01): : 329 - 334
  • [29] Chemical composition and source apportionment of Toronto summertime urban fine aerosol (PM2.5)
    J. Tsai
    S. Owega
    G. Evans
    R. Jervis
    M. Fila
    P. Tan
    O. Malpica
    Journal of Radioanalytical and Nuclear Chemistry, 2004, 259 : 193 - 197
  • [30] Seasonal variation and source apportionment of inorganic and organic components in PM2.5: influence of organic markers application on PMF source apportionment
    Xue, Qianqian
    Tian, Yingze
    Wei, Yang
    Song, Danlin
    Huang, Fengxia
    Tian, Shanshan
    Feng, Yinchang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (52) : 79002 - 79015