Greedy approximation for the minimum connected dominating set with labeling

被引:0
|
作者
Zishen Yang
Majun Shi
Wei Wang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
来源
Optimization Letters | 2021年 / 15卷
关键词
Greedy algorithm; Connected dominating set; Approximation algorithm; Performance ratio; Labeling;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document}. A subset C⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\subseteq V$$\end{document} is a dominating set if every vertex of V is either in C or adjacent to a vertex in C. Further, C is a connected dominating set if C is a dominating set and the induced subgraph G[C] is connected. The Minimum Connected Dominating Set (Min-CDS) problem asks to find a connected dominating set with the minimum size, which finds applications in communication networks, in particular, as a virtual backbone in wireless sensor networks. This paper focuses on a variant of the classic Min-CDS problem, called Minimum Connected Dominating Set with Labeling (Min-CDSL), in which we are given a connected graph with vertex labels, and are required to find a connected dominating set C such that the number of labels in C (instead of |C|) is minimized. Min-CDSL is apparently a generalization of Min-CDS, and is undoubtedly NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-complete\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {complete}$$\end{document}. We give an approximation algorithm for Min-CDSL within performance ratio bounded by ln|V(G)|+span(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln |V(G)|+\mathrm {span}(G)+1$$\end{document}, where span(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {span}(G)$$\end{document} refers to the maximum span of the input labeled graph (i.e., the number of connected components of the induced subgraph by a single label). In general, span(G)≪|V(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {span}(G)\ll |V(G)|$$\end{document} and for a series of labeled graphs span(G)=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {span}(G)=O(1)$$\end{document}. For a random graph G∈Gn,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in {G_{n,p}}$$\end{document}, span(G)=O(ln|V(G)|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {span}(G)=O(\ln |V(G)|)$$\end{document} almost surely, and thus our approximation ratio is O(ln|V(G)|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\ln |V(G)|)$$\end{document} which is reasonable comparing with the best known approximation ratio ln|V(G)|+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln |V(G)|+1$$\end{document} for Min-CDS.
引用
收藏
页码:685 / 700
页数:15
相关论文
共 50 条
  • [1] Greedy approximation for the minimum connected dominating set with labeling
    Yang, Zishen
    Shi, Majun
    Wang, Wei
    [J]. OPTIMIZATION LETTERS, 2021, 15 (02) : 685 - 700
  • [2] A greedy approximation for minimum connected dominating sets
    Ruan, L
    Du, HW
    Jia, XH
    Wu, WL
    Li, YS
    Ko, K
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 329 (1-3) : 325 - 330
  • [3] Greedy Algorithms for Minimum Connected Dominating Set Problems
    Yang, Deren
    Wang, Xiaofeng
    [J]. PROCEEDING OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES, 2009, : 643 - 646
  • [4] A greedy algorithm for the minimum -connected -fold dominating set problem
    Shi, Yishuo
    Zhang, Yaping
    Zhang, Zhao
    Wu, Weili
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 136 - 151
  • [5] On greedy approximation algorithm for the minimum resolving dominating set problem
    Zhong, Hao
    [J]. Journal of Combinatorial Optimization, 2024, 48 (04)
  • [6] A Greedy Algorithm on Constructing the Minimum Connected Dominating Set in Wireless Network
    Fu, Deqian
    Han, Lihua
    Yang, Zifen
    Jhang, Seong Tae
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2016, 12 (07):
  • [7] Novel distributed approximation algorithm for minimum connected dominating set
    Peng, W.
    Lu, X.C.
    [J]. 2001, Science Press (24):
  • [8] Approximation algorithm for the minimum partial connected Roman dominating set problem
    Zhang, Yaoyao
    Zhang, Zhao
    Du, Ding-Zhu
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (04)
  • [9] A Distributed Greedy Algorithm for Construction of Minimum Connected Dominating Set in Wireless Sensor Network
    Mohanty, Jasaswi Prasad
    Mandal, Chittaranjan
    [J]. 2014 APPLICATIONS AND INNOVATIONS IN MOBILE COMPUTING (AIMOC), 2014, : 104 - 110
  • [10] A SELF-STABILIZING DISTRIBUTED APPROXIMATION ALGORITHM FOR THE MINIMUM CONNECTED DOMINATING SET
    Kamei, Sayaka
    Kakugawa, Hirotsugu
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (03) : 459 - 476