On greedy approximation algorithm for the minimum resolving dominating set problem

被引:0
|
作者
Zhong, Hao [1 ,2 ]
机构
[1] South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
[2] Pazhou Lab, Guangzhou 510330, Peoples R China
基金
中国国家自然科学基金;
关键词
Resolving dominating set; NP-hard; Submodular function; Greedy approximation algorithm;
D O I
10.1007/s10878-024-01229-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate the minimum resolving dominating set problem which is a emerging combinatorial optimization problem in general graphs. We prove that the resolving dominating set problem is NP-hard and propose a greedy algorithm with an approximation ratio of (1+2lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + 2\ln n$$\end{document}) by establishing a submodular potential function, where n is the node number of the input graph.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A greedy algorithm for the minimum -connected -fold dominating set problem
    Shi, Yishuo
    Zhang, Yaping
    Zhang, Zhao
    Wu, Weili
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) : 136 - 151
  • [2] Greedy approximation for the minimum connected dominating set with labeling
    Zishen Yang
    Majun Shi
    Wei Wang
    Optimization Letters, 2021, 15 : 685 - 700
  • [3] Greedy approximation for the minimum connected dominating set with labeling
    Yang, Zishen
    Shi, Majun
    Wang, Wei
    OPTIMIZATION LETTERS, 2021, 15 (02) : 685 - 700
  • [4] Approximation algorithm for the minimum partial connected Roman dominating set problem
    Zhang, Yaoyao
    Zhang, Zhao
    Du, Ding-Zhu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (04)
  • [5] An iterated greedy algorithm for finding the minimum dominating set in graphs
    Casado, A.
    Bermudo, S.
    Lopez-Sanchez, A. D.
    Sanchez-Oro, J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 41 - 58
  • [6] A 2-approximation algorithm for the minimum weight edge dominating set problem
    Fujito, T
    Nagamochi, H
    DISCRETE APPLIED MATHEMATICS, 2002, 118 (03) : 199 - 207
  • [7] A local approximation algorithm for minimum dominating set problem in anonymous planar networks
    Wojciech Wawrzyniak
    Distributed Computing, 2015, 28 : 321 - 331
  • [9] A better-than-greedy approximation algorithm for the minimum set cover problem
    Hassin, R
    Levin, A
    SIAM JOURNAL ON COMPUTING, 2005, 35 (01) : 189 - 200
  • [10] An Exact Algorithm for the Minimum Dominating Set Problem
    Jiang, Hua
    Zheng, Zhifei
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 5604 - 5612