Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering

被引:0
|
作者
Naoki Nakayama
Azim Pothiawala
John Y. Lee
Nadine Matthias
Katsutsugu Umeda
Bryan K. Ang
Johnny Huard
Yun Huang
Deqiang Sun
机构
[1] The University of Texas Health Science Center at Houston Medical School,Brown Foundation Institute of Molecular Medicine
[2] The University of Texas Health Science Center at Houston Medical School,Department of Orthopaedic Surgery
[3] Texas A&M University,Institute of Bioscience and Technology
[4] University of Miami,Miller School of Medicine
[5] Kyoto University School of Medicine,Department of Pediatrics
[6] Weil Cornell Medicine,undefined
[7] Steadman Philippon Research Institute,undefined
来源
关键词
Permanent cartilage; Regeneration; Growth factor; Mesenchymal; Expansion; Differentiation; Endochondral ossification;
D O I
暂无
中图分类号
学科分类号
摘要
The cartilage of joints, such as meniscus and articular cartilage, is normally long lasting (i.e., permanent). However, once damaged, especially in large animals and humans, joint cartilage is not spontaneously repaired. Compensating the lack of repair activity by supplying cartilage-(re)forming cells, such as chondrocytes or mesenchymal stromal cells, or by transplanting a piece of normal cartilage, has been the basis of therapy for biological restoration of damaged joint cartilage. Unfortunately, current biological therapies face problems on a number of fronts. The joint cartilage is generated de novo from a specialized cell type, termed a ‘joint progenitor’ or ‘interzone cell’ during embryogenesis. Therefore, embryonic chondroprogenitors that mimic the property of joint progenitors might be the best type of cell for regenerating joint cartilage in the adult. Pluripotent stem cells (PSCs) are expected to differentiate in culture into any somatic cell type through processes that mimic embryogenesis, making human (h)PSCs a promising source of embryonic chondroprogenitors. The major research goals toward the clinical application of PSCs in joint cartilage regeneration are to (1) efficiently generate lineage-specific chondroprogenitors from hPSCs, (2) expand the chondroprogenitors to the number needed for therapy without loss of their chondrogenic activity, and (3) direct the in vivo or in vitro differentiation of the chondroprogenitors to articular or meniscal (i.e., permanent) chondrocytes rather than growth plate (i.e., transient) chondrocytes. This review is aimed at providing the current state of research toward meeting these goals. We also include our recent achievement of successful generation of “permanent-like” cartilage from long-term expandable, hPSC-derived ectomesenchymal chondroprogenitors.
引用
收藏
页码:2543 / 2563
页数:20
相关论文
共 50 条
  • [31] Downstream bioprocessing of human pluripotent stem cell-derived therapeutics
    Sart, Sebastien
    Liu, Chang
    Zeng, Eric Z.
    Xu, Chunhui
    Li, Yan
    ENGINEERING IN LIFE SCIENCES, 2022, 22 (11): : 667 - 680
  • [32] Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes
    Park, Misun
    Yoon, Young-sup
    KOREAN CIRCULATION JOURNAL, 2018, 48 (11) : 974 - 988
  • [33] Tumorigenicity Studies for Human Pluripotent Stem Cell-Derived Products
    Kuroda, Takuya
    Yasuda, Satoshi
    Sato, Yoji
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2013, 36 (02) : 189 - 192
  • [34] Downstream bioprocessing of human pluripotent stem cell-derived therapeutics
    Sart, Sebastien
    Liu, Chang
    Zeng, Eric Z.
    Xu, Chunhui
    Li, Yan
    Engineering in Life Sciences, 2022, 22 (11): : 667 - 680
  • [35] In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes
    Elena Matsa
    Chris Denning
    Journal of Cardiovascular Translational Research, 2012, 5 : 581 - 592
  • [36] A human pluripotent stem cell-derived in vitro model of myelination
    James, O. G.
    Selveraj, B. T.
    Vasistha, N.
    Barton, S.
    Magnani, D.
    Connick, P.
    Burr, K.
    Story, D.
    Ffrench-Constant, C.
    Chandran, S.
    GLIA, 2019, 67 : E443 - E444
  • [37] The Establishment of In Vitro Human Induced Pluripotent Stem Cell-Derived
    Idris, Izyan Mohd
    Nordin, Fazlina
    Muhamad, Nur Jannaim
    Jalil, Julaina Abdul
    Diana, Fatimah
    Ordin, Aminn
    Mohamed, Rosnani
    Matripen, Adiratna
    Tye, Gee Jun
    Zaman, Wan Safwani Wankamarul
    Yazid, Muhammad Dain
    Hweing, Min
    SAINS MALAYSIANA, 2023, 52 (03): : 863 - 876
  • [38] The advancement of human pluripotent stem cell-derived therapies into the clinic
    Thies, R. Scott
    Murry, Charles E.
    DEVELOPMENT, 2015, 142 (18): : 3077 - 3084
  • [39] In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes
    Matsa, Elena
    Denning, Chris
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2012, 5 (05) : 581 - 592
  • [40] Human Pluripotent Stem Cell-Derived Alveolar Organoid with Macrophages
    Seo, Ha-Rim
    Han, Hyeong-Jun
    Lee, Youngsun
    Noh, Young-Woock
    Cho, Seung-Ju
    Kim, Jung-Hyun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)