New p-ary sequence family with low correlation and large linear span

被引:0
|
作者
Zhengchun Zhou
Xiaohu Tang
Udaya Parampalli
Daiyuan Peng
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] Institute of Software,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,Institute of Mobile Communications
[4] Southwest Jiaotong University,Department of Computer Science and Software Engineering
[5] University of Melbourne,undefined
关键词
-ary sequence; Low correlation; Large linear span; Quadratic form;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for an odd prime p and positive integers n, m, and e such that n = me, a new family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} of p-ary sequences of period pn − 1 with low correlation and large linear span is constructed. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} has maximum correlation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1+p^{n+2e\over 2}}$$\end{document}, family size pn, and maximal linear span \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{(m+3)n\over 2}}$$\end{document}. When m is even, the proposed family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} contains Tang, Udaya, and Fan’s construction as a subset. Furthermore, when n is even and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e=1, \mathcal{S}}$$\end{document} has the same correlation and family size, but larger linear span compared with the construction by Seo, Kim, No, and Shin.
引用
收藏
页码:301 / 309
页数:8
相关论文
共 50 条
  • [31] SOME NEW RESULTS ON CROSS CORRELATION OF p-ARY m-SEQUENCE AND ITS DECIMATED SEQUENCE
    Chen, Wenbing
    Luo, Jinquan
    Tang, Yuansheng
    Liu, Quanquan
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (03) : 375 - 390
  • [32] Weight distributions and weight hierarchies of a family of p-ary linear codes
    Fei Li
    Xiumei Li
    [J]. Designs, Codes and Cryptography, 2022, 90 : 49 - 66
  • [33] Weight distributions and weight hierarchies of a family of p-ary linear codes
    Li, Fei
    Li, Xiumei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 49 - 66
  • [34] New Results on Nonexistence of Perfect p-Ary Sequences and Almost p-Ary Sequences
    Hai Ying LIU
    Ke Qin FENG
    [J]. Acta Mathematica Sinica,English Series, 2016, (01) : 2 - 10
  • [35] New Results on Nonexistence of Perfect p-Ary Sequences and Almost p-Ary Sequences
    Hai Ying LIU
    Ke Qin FENG
    [J]. Acta Mathematica Sinica., 2016, 32 (01) - 10
  • [36] New Results on Nonexistence of Perfect p-Ary Sequences and Almost p-Ary Sequences
    Liu, Hai Ying
    Feng, Ke Qin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (01) : 2 - 10
  • [37] New results on nonexistence of perfect p-ary sequences and almost p-ary sequences
    Hai Ying Liu
    Ke Qin Feng
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 2 - 10
  • [38] A new class of binary sequence family with low correlation and large linear complexity
    Wang, Jin-Song
    Qi, Wen-Feng
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS, 2007, : 84 - +
  • [39] A Family of p-ary Binomial Bent Functions
    Zheng, Dabin
    Zeng, Xiangyong
    Hu, Lei
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (09) : 1868 - 1872
  • [40] The large set of p-ary Kasami sequences
    Xia, Yongbo
    Zeng, Xiangyong
    Hu, Lei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (07) : 1436 - 1455