New p-ary sequence family with low correlation and large linear span

被引:0
|
作者
Zhengchun Zhou
Xiaohu Tang
Udaya Parampalli
Daiyuan Peng
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] Institute of Software,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,Institute of Mobile Communications
[4] Southwest Jiaotong University,Department of Computer Science and Software Engineering
[5] University of Melbourne,undefined
关键词
-ary sequence; Low correlation; Large linear span; Quadratic form;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for an odd prime p and positive integers n, m, and e such that n = me, a new family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} of p-ary sequences of period pn − 1 with low correlation and large linear span is constructed. It is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} has maximum correlation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1+p^{n+2e\over 2}}$$\end{document}, family size pn, and maximal linear span \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{(m+3)n\over 2}}$$\end{document}. When m is even, the proposed family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{S}}$$\end{document} contains Tang, Udaya, and Fan’s construction as a subset. Furthermore, when n is even and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e=1, \mathcal{S}}$$\end{document} has the same correlation and family size, but larger linear span compared with the construction by Seo, Kim, No, and Shin.
引用
收藏
页码:301 / 309
页数:8
相关论文
共 50 条
  • [1] New p-ary sequence family with low correlation and large linear span
    Zhou, Zhengchun
    Tang, Xiaohu
    Parampalli, Udaya
    Peng, Daiyuan
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (04) : 301 - 309
  • [2] New Construction of p-ary Sequence Family With Large Linear Span
    Kim, Young-Sik
    Chung, Jung-Soo
    No, Jong-Seon
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, VOLS 1-3, 2008, : 1562 - +
  • [4] New family of p-ary sequences with optimal correlation property and large linear span
    Jang, JW
    Kim, YS
    No, JS
    Helleseth, T
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 405 - 405
  • [5] New family of p-ary sequences with optimal correlation property and large linear span
    Jang, JW
    Kim, YS
    No, JS
    Helleseth, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1839 - 1844
  • [6] New families of p-ary sequences from quadratic form with low correlation and large linear span
    Tang, XH
    Udaya, P
    Fan, PZ
    [J]. SEQUENCES AND THEIR APPLICATIONS - SETA 2004, 2005, 3486 : 255 - 265
  • [7] New p-ary Sequences with Low Correlation and Large Family Size
    Liu, Fang
    Peng, Dai-Yuan
    Tang, Xiao-Hu
    Niu, Xian-Hua
    [J]. IWSDA'09: PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS, 2009, : 157 - 160
  • [8] New p-Ary Sequences with Low Correlation and Large Family Size
    Liu, Fang
    Peng, Daiyuan
    Tang, Xiaohu
    Niu, Xianhua
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (11) : 2245 - 2250
  • [9] A New Family of p-ary Decimated Sequences with Low Correlation
    Kim, Ji-Youp
    Choi, Sung-Tai
    No, Jong-Seon
    Chung, Habong
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1263 - 1267
  • [10] Families of p-ary sequences with low correlation and large linear complexity
    Han Cai
    Xiangyong Zeng
    Lei Hu
    [J]. Journal of Systems Science and Complexity, 2014, 27 : 1305 - 1319