Direction-guided two-stream convolutional neural networks for skeleton-based action recognition

被引:0
|
作者
Benyue Su
Peng Zhang
Manzhen Sun
Min Sheng
机构
[1] Anqing Normal University,Key Laboratory of Intelligent Perception and Computing of Anhui Province
[2] Anqing Normal University,School of Computer and Information
[3] Tongling University,School of Mathematics and Computer
[4] Anqing Normal University,School of Mathematics and Physics
来源
Soft Computing | 2023年 / 27卷
关键词
Action recognition; Skeleton data; Direction; Edge-level information; Motion information; Feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
In skeleton-based action recognition, treating skeleton data as pseudoimages using convolutional neural networks (CNNs) has proven to be effective. However, among existing CNN-based approaches, most focus on modeling information at the joint-level ignoring the size and direction information of the skeleton edges, which play an important role in action recognition, and these approaches may not be optimal. In addition, combining the directionality of human motion to portray action motion variation information is rarely considered in existing approaches, although it is more natural and reasonable for action sequence modeling. In this work, we propose a novel direction-guided two-stream convolutional neural network for skeleton-based action recognition. In the first stream, our model focuses on our defined edge-level information (including edge and edge_motion information) with directionality in the skeleton data to explore the spatiotemporal features of the action. In the second stream, since the motion is directional, we define different skeleton edge directions and extract different motion information (including translation and rotation information) in different directions to better exploit the motion features of the action. In addition, we propose a description of human motion inscribed by a combination of translation and rotation, and explore how they are integrated. We conducted extensive experiments on two challenging datasets, the NTU-RGB+D 60 and NTU-RGB+D 120 datasets, to verify the superiority of our proposed method over state-of-the-art methods. The experimental results demonstrate that the proposed direction-guided edge-level information and motion information complement each other for better action recognition.
引用
收藏
页码:11833 / 11842
页数:9
相关论文
共 50 条
  • [21] Two-stream temporal enhanced Fisher vector encoding for skeleton-based action recognition
    Jun Tang
    Baodi Liu
    Wenhui Guo
    Yanjiang Wang
    Complex & Intelligent Systems, 2023, 9 : 3147 - 3159
  • [22] Two-stream temporal enhanced Fisher vector encoding for skeleton-based action recognition
    Tang, Jun
    Liu, Baodi
    Guo, Wenhui
    Wang, Yanjiang
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 3147 - 3159
  • [23] Skeleton-based Action Recognition Method with Two-Stream Multi-relational GCNs
    Liu F.
    Qiao J.-Z.
    Dai Q.
    Shi X.-B.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (06): : 768 - 774
  • [24] Hidden Two-Stream Convolutional Networks for Action Recognition
    Zhu, Yi
    Lan, Zhenzhong
    Newsam, Shawn
    Hauptmann, Alexander
    COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 : 363 - 378
  • [25] Two-Stream Convolutional Networks for Action Recognition in Videos
    Simonyan, Karen
    Zisserman, Andrew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [26] 3D skeleton-based action recognition with convolutional neural networks
    Van-Nam Hoang
    Thi-Lan Le
    Thanh-Hai Tran
    Hai-Vu
    Van-Toi Nguyen
    2019 INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION (MAPR), 2019,
  • [27] Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional Networks
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9532 - 9545
  • [28] Multi-stream slowFast graph convolutional networks for skeleton-based action recognition
    Sun, Ning
    Leng, Ling
    Liu, Jixin
    Han, Guang
    IMAGE AND VISION COMPUTING, 2021, 109
  • [29] Multi-stream mixed graph convolutional networks for skeleton-based action recognition
    Zhuang, Boyuan
    Kong, Jun
    Jiang, Min
    Liu, Tianshan
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [30] A Two-Stream Recurrent Network for Skeleton-based Human Interaction Recognition
    Men, Qianhui
    Ho, Edmond S. L.
    Shum, Hubert P. H.
    Leung, Howard
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2771 - 2778