Sensory uncertainty and stick balancing at the fingertip

被引:0
|
作者
Tamas Insperger
John Milton
机构
[1] Budapest University of Technology and Economics,Department of Applied Mechanics
[2] Claremont Colleges,W. M. Keck Science Center
来源
Biological Cybernetics | 2014年 / 108卷
关键词
Stick balancing; Feedback delay; Sensory uncertainties; Control;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of sensory input uncertainty, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, on the stability of time-delayed human motor control are investigated by calculating the minimum stick length, ℓcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\mathrm{crit}$$\end{document}, that can be stabilized in the inverted position for a given time delay, τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Five control strategies often discussed in the context of human motor control are examined: three time-invariant controllers [proportional–derivative, proportional–derivative–acceleration (PDA), model predictive (MP) controllers] and two time-varying controllers [act-and-wait (AAW) and intermittent predictive controllers]. The uncertainties of the sensory input are modeled as a multiplicative term in the system output. Estimates based on the variability of neural spike trains and neural population responses suggest that ε≈7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \approx 7$$\end{document}–13 %. It is found that for this range of uncertainty, a tapped delay-line type of MP controller is the most robust controller. In particular, this controller can stabilize inverted sticks of the length balanced by expert stick balancers (0.25–0.5 m when τ≈0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 0.08$$\end{document} s). However, a PDA controller becomes more effective when ε>15%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 15\,\%$$\end{document}. A comparison between ℓcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\mathrm{crit}$$\end{document} for human stick balancing at the fingertip and balancing on the rubberized surface of a table tennis racket suggest that friction likely plays a role in balance control. Measurements of ℓcrit,τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\mathrm{crit},\,\tau $$\end{document}, and a variability of the fluctuations in the vertical displacement angle, an estimate of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, may make it possible to study the changes in control strategy as motor skill develops.
引用
收藏
页码:85 / 101
页数:16
相关论文
共 50 条
  • [21] Two sensory channels mediate perception of fingertip force
    Brothers, Trevor
    Hollins, Mark
    [J]. PERCEPTION, 2014, 43 (10) : 1071 - 1082
  • [22] Sensory reconstruction of the fingertip using the bilaterally innervated sensory cross-finger flap
    Lassner, F
    Becker, M
    Berger, A
    Pallua, N
    [J]. PLASTIC AND RECONSTRUCTIVE SURGERY, 2002, 109 (03) : 988 - 993
  • [23] SENSORY SYSTEMS A balancing act
    Bodo, Cristian
    [J]. NATURE REVIEWS NEUROSCIENCE, 2010, 11 (08) : 536 - 536
  • [24] Noise and Financial Stylized Facts: A Stick Balancing Approach
    Biondo, Alessio Emanuele
    Mazzarino, Laura
    Pluchino, Alessandro
    [J]. ENTROPY, 2023, 25 (04)
  • [25] Limits in motor control bandwidth during stick balancing
    Reeves, N. Peter
    Pathak, Pramod
    Popovich, John M., Jr.
    Vijayanagar, Vilok
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2013, 109 (10) : 2523 - 2527
  • [26] Stick balancing with reflex delay in case of parametric forcing
    Insperger, Tamas
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 2160 - 2168
  • [27] From Balancing a Stick to Tightrope Walking: How Added Mass Influences the Act of Balancing
    Minkin, Leonid
    Zable, Anthony C.
    [J]. PHYSICS TEACHER, 2022, 60 (07): : 549 - 553
  • [28] On the Control of Unstable Objects: The Dynamics of Human Stick Balancing
    Balasubramaniam, Ramesh
    [J]. PROGRESS IN MOTOR CONTROL: NEURAL, COMPUTATIONAL AND DYNAMIC APPROACHES, 2013, 782 : 149 - 168
  • [29] Understanding Robust Control Theory Via Stick Balancing
    Leong, Yoke Peng
    Doyle, John C.
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1508 - 1514
  • [30] Sensory thresholds using grating orientation tasks at the fingertip in cervical
    O'Dwyer, JP
    Hutchinson, M
    [J]. MOVEMENT DISORDERS, 2004, 19 : S116 - S116