Sensory uncertainty and stick balancing at the fingertip

被引:0
|
作者
Tamas Insperger
John Milton
机构
[1] Budapest University of Technology and Economics,Department of Applied Mechanics
[2] Claremont Colleges,W. M. Keck Science Center
来源
Biological Cybernetics | 2014年 / 108卷
关键词
Stick balancing; Feedback delay; Sensory uncertainties; Control;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of sensory input uncertainty, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, on the stability of time-delayed human motor control are investigated by calculating the minimum stick length, ℓcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\mathrm{crit}$$\end{document}, that can be stabilized in the inverted position for a given time delay, τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Five control strategies often discussed in the context of human motor control are examined: three time-invariant controllers [proportional–derivative, proportional–derivative–acceleration (PDA), model predictive (MP) controllers] and two time-varying controllers [act-and-wait (AAW) and intermittent predictive controllers]. The uncertainties of the sensory input are modeled as a multiplicative term in the system output. Estimates based on the variability of neural spike trains and neural population responses suggest that ε≈7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \approx 7$$\end{document}–13 %. It is found that for this range of uncertainty, a tapped delay-line type of MP controller is the most robust controller. In particular, this controller can stabilize inverted sticks of the length balanced by expert stick balancers (0.25–0.5 m when τ≈0.08\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 0.08$$\end{document} s). However, a PDA controller becomes more effective when ε>15%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 15\,\%$$\end{document}. A comparison between ℓcrit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\mathrm{crit}$$\end{document} for human stick balancing at the fingertip and balancing on the rubberized surface of a table tennis racket suggest that friction likely plays a role in balance control. Measurements of ℓcrit,τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\mathrm{crit},\,\tau $$\end{document}, and a variability of the fluctuations in the vertical displacement angle, an estimate of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, may make it possible to study the changes in control strategy as motor skill develops.
引用
收藏
页码:85 / 101
页数:16
相关论文
共 50 条
  • [1] Sensory uncertainty and stick balancing at the fingertip
    Insperger, Tamas
    Milton, John
    [J]. BIOLOGICAL CYBERNETICS, 2014, 108 (01) : 85 - 101
  • [2] Predictor feedback models for stick balancing with delay mismatch and sensory dead zones
    Nagy, Dalma J.
    Insperger, Tamas
    [J]. CHAOS, 2022, 32 (05)
  • [3] Stick balancing with feedback delay, sensory dead zone, acceleration and jerk limitation
    Insperger, Tamas
    Milton, John
    [J]. IUTAM SYMPOSIUM ON NONLINEAR AND DELAYED DYNAMICS OF MECHATRONIC SYSTEMS, 2017, 22 : 59 - 66
  • [4] TENDON FORCES BALANCING A FORCE ON THE FINGERTIP
    SPOOR, CW
    [J]. JOURNAL OF BIOMECHANICS, 1982, 15 (10) : 799 - 799
  • [5] Human and machine stick balancing
    Tajima, Shigeru
    Ohira, Toru
    Tonosaki, Yukinori
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 721 - 727
  • [6] THE ROLE OF THE INTRINSIC MUSCLES IN BALANCING A FORCE ON THE FINGERTIP
    SPOOR, CW
    [J]. JOURNAL OF ANATOMY, 1981, 133 (AUG) : 148 - 148
  • [7] Balancing carrot and stick in vocational education
    不详
    [J]. EDUCATION AND TRAINING, 2005, 47 (02):
  • [8] PERIODIC CONTROL IN A STICK BALANCING PROBLEM
    Bencsik, Laszlo
    Insperger, Tamas
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 6, 2020,
  • [9] Direction of transfer effect on stick balancing
    Stevens, David J.
    Anderson, David I.
    O'Dwyer, Nicholas
    Williams, Andrew M.
    [J]. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2011, 33 : S116 - S117
  • [10] Balancing Wearability and Functionality in the Design of a Haptic Fingertip Device
    Poetter, Max A.
    Schneider, Julia
    Muschter, Evelyn
    Krzywinski, Jens
    Hulin, Thomas
    [J]. 17TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2024, 2024, : 107 - 111