Extreme value theory applied to document retrieval from large collections

被引:0
|
作者
David Madigan
Yehuda Vardi
Ishay Weissman
机构
[1] Avaya Labs,
[2] Rutgers University,undefined
[3] Technion,undefined
来源
Information Retrieval | 2006年 / 9卷
关键词
very large corpus IR; extreme value theory; precision at K;
D O I
暂无
中图分类号
学科分类号
摘要
We consider text retrieval applications that assign query-specific relevance scores to documents drawn from particular collections. Such applications represent a primary focus of the annual Text Retrieval Conference (TREC), where the participants compare the empirical performance of different approaches. P(K), the proportion of the top K documents that are relevant, is a popular measure of retrieval effectiveness.
引用
收藏
页码:273 / 294
页数:21
相关论文
共 50 条
  • [31] Prediction of air pollution episodes: Extreme value theory applied in Athens
    Department of Chemical Engineering, National Technical University, Athens, Greece
    不详
    ENVIRON. TECHNOL., 4 (349-359):
  • [32] 47 Years of Large Antarctic Calving Events: Insights From Extreme Value Theory
    Mackie, Emma J.
    Millstein, Joanna
    Serafin, Katherine A.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (23)
  • [33] Extreme value theory applied to multi-channel communication systems
    Deane, JHB
    Johnstone, GG
    Ledford, AW
    Underhill, MJ
    ELECTRONICS LETTERS, 1997, 33 (10) : 832 - 833
  • [34] Feature selection for the classification of large document collections
    Brank, Janez
    Mladenic, Dunja
    Grobelnik, Marko
    Milic-Frayling, Natasa
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2008, 14 (10) : 1562 - 1596
  • [35] Efficient clustering of very large document collections
    Dhillon, IS
    Fan, J
    Guan, YQ
    DATA MINING FOR SCIENTIFIC AND ENGINEERING APPLICATIONS, 2001, 2 : 357 - 381
  • [36] An efficient clustering approach for large document collections
    Han, B
    Kang, LS
    Song, HZ
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 240 - 247
  • [37] Evaluating Visual Analytics for Relevant Information Retrieval in Document Collections
    da Silva, Sherlon Almeida
    Milios, Evangelos E.
    de Oliveira, Maria Cristina F.
    INTERACTING WITH COMPUTERS, 2023, 35 (02) : 247 - 261
  • [38] Information retrieval: Solving mismatching vocabulary in closed document collections
    Fitzgerald, Kyle Andrew
    de la Harpe, Andre Charles
    Uys, Corrie Susanna
    Bytheway, Andrew John
    SOUTH AFRICAN JOURNAL OF LIBRARIES AND INFORMATION SCIENCE, 2021, 87 (02) : 42 - 54
  • [39] A new Retrieval ranking method based on Document retrieval expected value in Chinese document
    Wang, Tao
    Chen, Mei
    Jiang, Yan
    Wang, Hanhu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, 2008, : 367 - 371
  • [40] EXTREME VALUE THEORY APPLIED TO SHORT-TERM FLOW RECORDS FROM A SMALL CATCHMENT AREA
    WITHERS, DH
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS, 1972, 51 (NFEB): : 385 - &