Kernel classification with missing data and the choice of smoothing parameters

被引:0
|
作者
Levon Demirdjian
Majid Mojirsheibani
机构
[1] University of California,Department of Statistics
[2] California State University,Department of Mathematics
来源
Statistical Papers | 2019年 / 60卷
关键词
Classification; Kernel; Missing covariate; Consistency; Shatter coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
Methods are proposed for selecting smoothing parameters of kernel classifiers in the presence of missing covariates. Here the missing covariates can appear in both the data and in the unclassified observation that has to be classified. The proposed methods are quite straightforward to implement. Exponential performance bounds will be derived for the resulting classifiers. Such bounds, in conjunction with the Borel–Cantelli lemma, provide various strong consistency results. Several numerical examples are presented to illustrate the effectiveness of the proposed procedures.
引用
收藏
页码:1487 / 1513
页数:26
相关论文
共 50 条
  • [31] On classification with nonignorable missing data
    Mojirsheibani, Majid
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184
  • [32] A KERNEL-METHOD FOR SMOOTHING POINT PROCESS DATA
    DIGGLE, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1985, 34 (02) : 138 - 147
  • [33] Heat kernel smoothing of scalar and vector image data
    Zhang, Fan
    Hancock, Edwin R.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1549 - +
  • [34] Smoothing spatio-temporal data with complex missing data patterns
    Arnone, Eleonora
    Sangalli, Laura M.
    Vicini, Andrea
    [J]. STATISTICAL MODELLING, 2023, 23 (04) : 327 - 356
  • [35] Nonparametric kernel smoothing classification to enhance optical correlation decision performances
    Saumard, Matthieu
    Elbouz, Marwa
    Aron, Michael
    Alfalou, Ayman
    [J]. PATTERN RECOGNITION AND TRACKING XXX, 2019, 10995
  • [36] CHOICE OF SMOOTHING PARAMETER FOR KERNEL TYPE RIDGE ESTIMATORS IN SEMIPARAMETRIC REGRESSION MODELS
    Yilmaz, Ersin
    Yuzbasi, Bahadir
    Aydin, Dursun
    [J]. REVSTAT-STATISTICAL JOURNAL, 2021, 19 (01) : 47 - 69
  • [37] Kernel discriminant analysis using case-specific smoothing parameters
    Ghosh, Anil K.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1413 - 1418
  • [38] Empirical choice of smoothing parameters in robust optical flow estimation
    Shi, MG
    Solo, V
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 349 - 352
  • [39] Empirical choice of smoothing parameters in optical flow with correlated errors
    Shi, M
    Solo, V
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 161 - 164
  • [40] CHOICE OF SMOOTHING PARAMETERS FOR PARZEN ESTIMATORS OF PROBABILITY DENSITY FUNCTIONS
    DUIN, RPW
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1976, 25 (11) : 1175 - 1179