Microfluidic production of liposomes through liquid-liquid phase separation in ternary droplets

被引:0
|
作者
Xu-Chun Song
Zi-Han Zhou
Ya-Lan Yu
Nan-Nan Deng
机构
[1] Southwest Petroleum University,College of Chemistry and Chemical Engineering
[2] Shanghai Jiao Tong University,School of Chemistry and Chemical Engineering
关键词
microfluidics; liposomes; ternary droplets; phase separation;
D O I
暂无
中图分类号
学科分类号
摘要
Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid-liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.
引用
收藏
页码:1017 / 1022
页数:5
相关论文
共 50 条
  • [41] Liquid-Liquid Phase Separation in an Elastic Network
    Style, Robert W.
    Sai, Tianqi
    Fanelli, Nicolo
    Ijavi, Mahdiye
    Smith-Mannschott, Katrina
    Xu, Qin
    Wilen, Lawrence A.
    Dufresne, Eric R.
    PHYSICAL REVIEW X, 2018, 8 (01):
  • [42] Liquid-Liquid Phase Separation in Cardiovascular Diseases
    Mo, Yuanxi
    Feng, Yuliang
    Huang, Wei
    Tan, Ning
    Li, Xinyi
    Jie, Minwen
    Feng, Tong
    Jiang, Hao
    Jiang, Lei
    CELLS, 2022, 11 (19)
  • [43] Applications of Liquid-Liquid Phase Separation in Biosensing
    Huang, Huizhen
    Hu, Jun
    CHEMBIOCHEM, 2025,
  • [44] Liquid-liquid Phase Separation in Viral Function
    Zhang, Xiaoyue
    Zheng, Run
    Li, Zhengshuo
    Ma, Jian
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (16)
  • [45] Biomolecular Liquid-Liquid Phase Separation for Biotechnology
    Shil, Sumit
    Tsuruta, Mitsuki
    Kawauchi, Keiko
    Miyoshi, Daisuke
    BIOTECH, 2023, 12 (02):
  • [46] Spontaneous liquid-liquid phase separation of water
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Tanaka, Hideki
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [47] Liquid-liquid phase separation in tumor biology
    Tong, Xuhui
    Tang, Rong
    Xu, Jin
    Wang, Wei
    Zhao, Yingjun
    Yu, Xianjun
    Shi, Si
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [48] Liquid-liquid phase separation in innate immunity
    Liu, Dawei
    Yang, Jinhang
    Cristea, Ileana M.
    TRENDS IN IMMUNOLOGY, 2024, 45 (06) : 454 - 469
  • [49] Liquid-liquid phase separation in organic aerosol
    Freedman, Miriam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [50] Modulating α-Synuclein Liquid-Liquid Phase Separation
    Sawner, Ajay Singh
    Ray, Soumik
    Yadav, Preeti
    Mukherjee, Semanti
    Panigrahi, Rajlaxmi
    Poudyal, Manisha
    Patel, Komal
    Ghosh, Dhiman
    Kummerant, Eric
    Kumar, Ashutosh
    Riek, Roland
    Maji, Samir K.
    BIOCHEMISTRY, 2021, 60 (48) : 3676 - 3696