Fermion confinement induced by geometry

被引:0
|
作者
C. Romero
J. B. Formiga
C. Dariescu
机构
[1] Universidade Federal da Paraíba,Departamento de Física
[2] Al. I. Cuza University,Departament of Solid State and Theoretical Physics, Faculty of Physics
来源
Gravitation and Cosmology | 2011年 / 17卷
关键词
Dirac Equation; Torsion Tensor; Coordinate Basis; Massless Fermion; Weyl Scalar;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a five-dimensional model in which fermions are confined in a hypersurface due to an interaction with a purely geometric field. Inspired by the Rubakov-Shaposhnikov field-theoretical model, in which massless fermions can be localized in a domain wall through the interaction of a scalar field, we show that particle confinement may also take place if we endow the five-dimensional bulk with a Weyl integrable geometric structure, or if we assume the existence of a torsion field acting in the bulk. In this picture, the kind of interaction considered in the Rubakov-Shaposhnikov model is replaced by an interaction of fermions with a geometric field, namely a Weyl scalar field or a torsion field. We show that in both cases the confinement is independent of the energy and mass of the fermionic particle. We generalize these results to the case in which the bulk is an arbitrary n-dimensional curved space.
引用
收藏
页码:252 / 258
页数:6
相关论文
共 50 条
  • [31] Demixing of boson-fermion clouds under harmonic confinement
    Akdeniz, Z
    Minguzzi, A
    Vignolo, P
    LASER PHYSICS, 2003, 13 (04) : 577 - 581
  • [32] Confinement and fermion doubling problem in Dirac-like Hamiltonians
    Messias de Resende, B.
    Crasto de Lima, F.
    Miwa, R. H.
    Vernek, E.
    Ferreira, G. J.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [33] Spectral geometry for the standard model without fermion doubling
    Bochniak, Arkadiusz
    Sitarz, Andrzej
    PHYSICAL REVIEW D, 2020, 101 (07)
  • [34] FERMION DYNAMICS IN THE KALUZA-KLEIN MONOPOLE GEOMETRY
    BAIS, FA
    BATENBURG, P
    NUCLEAR PHYSICS B, 1984, 245 (03) : 469 - 480
  • [35] Origin of fermion generations from extended noncommutative geometry
    Yu, Hefu
    Ma, Bo-Qiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (29):
  • [36] How to measure the fractal geometry of the relativistic fermion propagator
    Kroger, H
    PHYSICS LETTERS A, 1996, 213 (5-6) : 211 - 218
  • [37] Spontaneous CPT breaking and fermion propagation in the Schwarzschild geometry
    Colladay, Don
    Law, Leo
    PHYSICS LETTERS B, 2019, 795 : 457 - 461
  • [38] Magnetic geometry and the confinement of electrically conducting plasmas
    Faddeev, L
    Niemi, AJ
    PHYSICAL REVIEW LETTERS, 2000, 85 (16) : 3416 - 3419
  • [39] ION CONFINEMENT BY ROTATION IN MAGNETIC MIRROR GEOMETRY
    LONGMIRE, CL
    NAGLE, DE
    RIBE, FL
    PHYSICAL REVIEW, 1959, 114 (05): : 1187 - 1191
  • [40] The effect of geometry on charge confinement in three dimensions
    Sadjadi, H. Mohseni
    EUROPHYSICS LETTERS, 2006, 75 (03): : 371 - 377