An example of an infinite tamely ramified Hilbert tower

被引:0
|
作者
Christian Maire
机构
[1] Laboratoire de Mathématiques – UMR 6623,
[2] University of Besançon,undefined
[3] 16,undefined
[4] route de Gray,undefined
[5] F-25030 Besançon,undefined
[6] France,undefined
来源
Archiv der Mathematik | 1998年 / 70卷
关键词
Number Field;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we apply a refinement of the theorem of Golod-Safarevic (see {[3]) to the problem of the tamely ramified Hilbert 2-tower of a number field. As example, we prove that the maximal 2-extension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\Bbb Q}(\sqrt {-3*13*61}) $\end{document} unramified outside 13 is infinite.
引用
收藏
页码:132 / 136
页数:4
相关论文
共 50 条