Application of radial basis functions in solving fuzzy integral equations

被引:0
|
作者
Sh. S. Asari
M. Amirfakhrian
S. Chakraverty
机构
[1] Islamic Azad University,Department of Mathematics
[2] Central Tehran Branch,Department of Mathematics
[3] National Institute of Technology,undefined
来源
关键词
Radial basis functions interpolation; Inverse multi-quadric function; Fuzzy integral equation; Fuzzy number;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, a numerical method based on radial basis functions (RBFs) is proposed to approximate the solution of fuzzy integral equations. By applying RBF in fuzzy integral equation, a linear system ΨC=G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi C=G $$\end{document} is obtained. Then target function would be approximated by defining coefficient vector C. Error estimation of the method has been shown which is based on exponential convergence rates of RBFs. Finally, validity of the method is illustrated by some examples.
引用
收藏
页码:6373 / 6381
页数:8
相关论文
共 50 条
  • [21] Solving partial differential equations on (evolving) surfaces with radial basis functions
    Wendland, Holger
    Kuenemund, Jens
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (04)
  • [22] Boundary integral equations on the sphere with radial basis functions: error analysis
    Tran, T.
    Le Gia, Q. T.
    Sloan, I. H.
    Stephan, E. P.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (11) : 2857 - 2871
  • [23] Solving Ito integral equations with time delay via basis functions
    Nouri, Mostafa
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (02): : 268 - 281
  • [24] Wavelet-like basis functions for solving scattering integral equations
    Franza, Olivier P.
    Wagner, Robert L.
    Chew, Weng Cho
    [J]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1994, 1 : 3 - 6
  • [25] Meshless Radial Basis Functions Method for Solving Hallen's Integral Equation
    Lai, Sheng-Jian
    Wang, Bing-Zhong
    Duan, Yong
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2012, 27 (01): : 9 - 13
  • [26] Application of Gaussian Quadratures in Solving Fuzzy Fredholm Integral Equations
    Khezerloo, M.
    Allahviranloo, T.
    Salahshour, S.
    Kiasari, M. Khorasani
    Ghasemi, S. Haji
    [J]. INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 481 - 490
  • [27] Application of global optimization and radial basis functions to numerical solutions of weakly singular Volterra integral equations
    Galperin, EA
    Kansa, EJ
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) : 491 - 499
  • [28] SOLVING LINEAR FUZZY FREDHOLM INTEGRAL EQUATIONS SYSTEM BY TRIANGULAR FUNCTIONS
    Asl, E. Hengamian
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 9 (03): : 185 - 201
  • [29] A Meshless Discrete Galerkin Method Based on the Free Shape Parameter Radial Basis Functions for Solving Hammerstein Integral Equations
    Assari, Pouria
    Dehghan, Mehdi
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (03) : 540 - 568
  • [30] Application of fuzzy differential transform method for solving fuzzy Volterra integral equations
    Salahshour, S.
    Allahviranloo, T.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) : 1016 - 1027